Skip to main content
Log in

PEEK/SiO2 composites with high thermal stability for electronic applications

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Thermal and mechanical properties of new high performance polymer matrix composites based on poly(etheretherketone) (PEEK) as matrix and crystalline-silica (SiO2) as reinforcement were discussed for application in electronic packaging substrates or printed circuit boards. The content of SiO2 was varied between 0 and 50 wt. %. Scanning electron microscopy showed uniform dispersion of SiO2 particles in the matrix. Thermogravimetry analysis showed significant increase in thermal stability and char yield with increase in SiO2 content in the matrix. Differential scanning calorimetry showed that SiO2 had a heterogeneous nucleating effect on PEEK, leading to an increase in peak temperature of crystallization and onset crystallization temperature of the composites compared to a pure matrix. The microhardness increased approximately 42%. A modified rule of mixtures with a strengthening efficiency factor equal to 0.06 fit the data nicely. The results show that the prepared PEEK/SiO2 composites may have potential applications in electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Goyal, A. N. Tiwari, U. P. Mulik, and Y. S. Negi, Compos. A 38, 516 (2007).

    Article  Google Scholar 

  2. C. P. Wong and R. S. Bollampally, J. Appl. Polym. Sci. 74, 3396 (1999).

    Article  CAS  Google Scholar 

  3. T. J. Wooster, S. Abrol, J. M. Hey, and D. R. MacFarlane, Compos. A 35, 75 (2004).

    Article  Google Scholar 

  4. H. Ishida and S. Rimdusit, Thermomechanica Acta 320, 177 (2004).

    Article  Google Scholar 

  5. T. Agag and T. Takeichi, Materials Science Forum 449, 1157 (2004).

    Article  Google Scholar 

  6. T. Takeichi, R. Zeidam, and T. Agag, Polymer 43, 45 (2002).

    Article  CAS  Google Scholar 

  7. L. Li and D. D. L. Chung, J. Electron. Mater. 23, 557 (1994).

    Article  CAS  Google Scholar 

  8. X.-G. Chen, J.-D. Guo, B. Zheng, Y.-Q Li, S.-Y. Fu, and G.-H. Hu, Compos. Sci. Technol. 67, 3006 (2007).

    Article  CAS  Google Scholar 

  9. Z. S. Petrovi, I. Javni. A. Waddon, and G. Banhegyi, J. Appl. Polym. Sci. 76, 133 (2000).

    Article  Google Scholar 

  10. Y. C. Chen, H.-C. Lin, and Y.-D. Lee, J. Polym. Res. 11, 1 (2004).

    Article  Google Scholar 

  11. M. Chen, G. Tian, Y. Zhang, C. Wan, and Y. Zhang, J. Appl. Polym. Sci. 100, 1889 (2006).

    Article  CAS  Google Scholar 

  12. R. K. Goyal, P. Jadhav, and A. N. Tiwari, J. Electron. Mater. 40, 1377 (2011).

    Article  CAS  Google Scholar 

  13. S. Singha and M. J. Thomas, IEEE Transactions on Dielectrics and Electrical Insulation 15, 1 (2008).

    Article  Google Scholar 

  14. Z.-D. Wang, J.-J. Lu, Y. Li, S. Y. Fu, S.-Q. Jiang, and X.-X Zhao, Compos. A 37, 74 (2006).

    Article  CAS  Google Scholar 

  15. X. F. Yao, H. Y. Yeh, D. Zhou, and Y. H. Zhang, J. Compos. Mater. 40, 371 (2005).

    Article  Google Scholar 

  16. G. Zhang, A. K. Schlarb, S. Tria, and O. Elkedim, Compos. Sci. Technol. 68, 3073 (2008).

    Article  CAS  Google Scholar 

  17. M. C. Kuo, C. M. Tsai, J. C. Huang, and M. Chena, Mater. Chem. Phys. 90, 185 (2005).

    Article  CAS  Google Scholar 

  18. Y. Sun, Z. Zhang, and C. P. Wong, IEEE 9 th Int. Symposium on Advanced Packaging Materials, p. 132, Atlanta, Georgia, USA (2004).

    Google Scholar 

  19. P. Bujard, G. Kuhnlein, S. Ino, and T. Shiobarn, IEEE Transaction on Components, Packaging, and Manufacturing Technology-part A, 17, 527 (1994).

    Article  CAS  Google Scholar 

  20. R. K. Goyal, A. N. Tiwari, U. P. Mulik, and Y. S. Negi, J. Nanosci. Nanotechnol. 9, 6902 (2009).

    CAS  Google Scholar 

  21. R. K. Goyal and J. N. Sahu, Adv. Mater. Lett. 1, 205 (2010).

    Google Scholar 

  22. W. Kim, J.-W. Bae, I.-D. Choi, and Y. S. Kim, Polym. Eng. Sci. 39, 756 (1999).

    Article  CAS  Google Scholar 

  23. R. K. Goyal, A. N. Tiwari, U. P. Mulik, and Y. S. Negi, Compos. Sci. Technol. 67, 1802 (2007).

    Article  CAS  Google Scholar 

  24. R. K. Goyal, A. N. Tiwari, and Y. S. Negi, Mater. Sci. Eng. A 491, 230 (2008).

    Article  Google Scholar 

  25. V. Balaji, A. N. Tiwari, and R. K. Goyal, Polym. Eng. Sci. 51, 509 (2011).

    Article  CAS  Google Scholar 

  26. Y. C. Chen, H.-C. Lin, and Y.-D. Lee, J. Polym. Res. 10, 247 (2003).

    Article  CAS  Google Scholar 

  27. R. K. Goyal, Y. S. Negi, and A. N. Tiwari, J. Appl. Polym. Sci. 100, 4623 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Goyal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, R.K., Rokade, K.A., Kapadia, A.S. et al. PEEK/SiO2 composites with high thermal stability for electronic applications. Electron. Mater. Lett. 9, 95–100 (2013). https://doi.org/10.1007/s13391-012-2107-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2107-x

Keywords

Navigation