Skip to main content
Log in

Spin coating fabrication of thin film transistors using enriched semiconducting SWNT solution

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Semiconducting single wall carbon nanotubes (SWNT) are excellent candidates for thin film transistor (TFT) applications. Major obstacles in developing low cost separation techniques for high purity semiconducting SWNTs have hindered their incorporation into many low-end functional devices. For low-end transistor devices a moderate ON/OFF ratio and performance is sufficient. A mix of single wall nanotubes with enriched semiconducting tubes can meet these needs. Using such 90% semiconducting enriched SWNTs, we have fabricated thin film transistors with a maximum 104 ON/OFF ratio. The device-manufacturing yield was low due to inconsistencies in the distribution of the SWNTs across the wafer. Increasing the density of the SWNTs in the channel using the drop casting method increased the device-manufacturing yield but decreased the performance. Conducting multiple spin coating processes is expected to increase the device-manufacturing yield without sacrificing device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices, p. 271, Cambridge: Cambridge University Press (2004).

    Google Scholar 

  2. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, p. 148, Berlin: Springer (2001).

    Book  Google Scholar 

  3. M. Burghard, H. Klauk, and K. Kern, Adv. Mater. 21, 2586 (2009).

    Article  CAS  Google Scholar 

  4. R. Chau, B. Doyle, S. Datta, J. Kavalieros, and K. Zhang, Nature Mater. 6, 810 (2007).

    Article  CAS  Google Scholar 

  5. C. W. Lee, C.-H. Weng, L. Wei, Y. Chen, M. B. Chan-Park, C.-H. Tsai, K.-C. Leou, C. H. P. Poa, J. Wang, and L.-J. Li, J. Phys. Chem. C 112, 12089 (2008).

    Google Scholar 

  6. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Nature Nanotechnology 1, 60 (2006).

    Article  CAS  Google Scholar 

  7. D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos, J. Am. Chem. Soc., 125, 3370 (2003).

    Article  CAS  Google Scholar 

  8. M. Yudasaka, M. Zhang, C. Jabs, and S. Iijima, Appl. Phys. A: Materials Science & Processing, 71, 449 (2000).

    Article  CAS  Google Scholar 

  9. N. Izard, S. Kazaoui, K. Hata, T. Okazaki, T. Saito, S. Iijima, and N. Minami, Appl. Phys. Lett. 92, 243112 (2008).

    Article  Google Scholar 

  10. C. Wang, J. Zhang, and C. Zhou, ACS Nano 4, 7123 (2010).

    Article  CAS  Google Scholar 

  11. S. J. Yun, Y. W. Lee, S. W. Son, C. W. Byun, A. M. Reddy, and S. K. Joo, Electron. Mater. Lett. 8, 397 (2012).

    Article  CAS  Google Scholar 

  12. J.-Y. Kwon, D.-J. Lee, and K.-B. Kim, Electron. Mater. Lett. 7, 1 (2011).

    Article  CAS  Google Scholar 

  13. E. S. Snow, P. M. Campbell, M. G. Ancona, and J. P. Novak, Appl. Phys. Lett. 86, 033105 (2005).

    Article  Google Scholar 

  14. X. Xiong, C.-L. Chen, P. Ryan, A. A. Busnaina, Y. J. Jung, and M. R. Dokmeci, Nanotechnology 20, 295302 (2009).

    Article  Google Scholar 

  15. S. Selvarasah, K. Anstey, S. Somu, A. Busnaina, and M. R. Dokmeci, IEEE-NANO 2009. 9th IEEE Conference on Nanotechnology, p. 29, Genoa, Italy (2009).

    Google Scholar 

  16. Y. Zhou, L. Hu, and G. Gruner, Appl. Phys. Lett. 88, 123109 (2006).

    Article  Google Scholar 

  17. P. Beecher, P. Servati, A. Rozhin, A. Colli, V. Scardaci, S. Pisana, T. Hasan, A. J. Flewitt, J. Robertson, G. W. Hsieh, F. M. Li, A. Nathan, A. C. Ferrari, and W. I. Milne, J. Appl. Phys. 102, 043710 (2007).

    Article  Google Scholar 

  18. W. R. Small and M. Panhuis Dr., Small 3, 1500 (2007).

    Article  CAS  Google Scholar 

  19. T. Zhang, S. Mubeen, N. V. Myung, and M. A. Deshusses, Nanotechnology 19, 332001 (2008).

    Article  Google Scholar 

  20. W. Wang, K. A. S. Fernando, Y. Lin, M. J. Meziani, L. M. Veca, L. Cao, P. Zhang, M. M. Kimani, and Y.-P. Sun, J. Am. Chem. Soc. 130, 1415 (2008).

    Article  CAS  Google Scholar 

  21. S. Somu, H. Wang, Y. Kim, L. Jaberansari, M. G. Hahm, B. Li, T. Kim, X. Xiong, Y. J. Jung, M. Upmanyu, and A. Busnaina, ACS NANO 4, 4142 (2010).

    Article  CAS  Google Scholar 

  22. P. Chen, Y. Fu, R. Aminirad, C. Wang, J. Zhang, K. Wang, K. Galatsis, and C. Zhou, Nano Lett. 11, 5301 (2011).

    Article  CAS  Google Scholar 

  23. P. G. Collins, M. S. Arnold, and P. Avouris, Science 292, 706 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Busnaina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Somu, S. & Busnaina, A. Spin coating fabrication of thin film transistors using enriched semiconducting SWNT solution. Electron. Mater. Lett. 9, 505–507 (2013). https://doi.org/10.1007/s13391-013-0031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-0031-3

Keywords

Navigation