Skip to main content
Log in

Pave the way to the batch production of SWNT arrays for carbon-based electronic devices

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWNTs) have been regarded as one of the most promising candidates to supplement or even replace silicon in the post-Moore era. The requirement is to prepare the horizontally aligned SWNTs arrays (HASAs) with multiple indicators, including high density, high semiconducting purity, and wafer-scale uniformity. However, after all the fevered works being done in controlled synthesis, we still have a long way to go before realizing the application of SWNTs in highly performed electronic devices. The methods of batch production and high-throughput characterization techniques of the HASAs are the two main challenges. In this outlook, we first summarized the progresses in synthesis of HASAs with either high density or high semiconducting purity. Then the methods adopted in characterizing SWNTs and HASAs were discussed according to the different principles of characterization techniques. Afterwards, the development of carbon nanotube based electronic devices, specifically, the field effect transistors (FETs), was reviewed from three perspectives. The problems involved in electronic applications bring forward the higher request to the HASAs itself. Therefore, in the end of this outlook, we prospected the future of the synthesis and corresponding characterization of HASAs, and tried to provide our ideas about how to pave the way to the batch production of HASAs for carbon based electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, Q.; Han, S. J.; Tersoff, J.; Franklin, A. D.; Zhu, Y.; Zhang, Z.; Tulevski, G. S.; Tang, J. S.; Haensch, W. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance. Science 2015, 350, 68–72.

    CAS  Google Scholar 

  2. Peng, L. M.; Zhang, Z. Y.; Qiu, C. G. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505.

    CAS  Google Scholar 

  3. Zhang, Y. G.; Chang, A.; Cao, J. E.; Wang, Q.; Kim, W.; Li, Y. M.; Morris, N.; Yenilmez, E.; Kong, J.; Dai, H. J. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 2001, 79, 3155–3157.

    CAS  Google Scholar 

  4. Jin, Z.; Chu, H. B.; Wang, J. Y.; Hong, J. X.; Tan, W. C.; Li, Y. Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. Nano Lett. 2007, 7, 2073–2079.

    CAS  Google Scholar 

  5. Ismach, A.; Kantorovich, D.; Joselevich, E. Carbon nanotube graphoepitaxy: Highly oriented growth by faceted nanosteps. J. Am. Chem. Soc. 2005, 127, 11554–11555.

    CAS  Google Scholar 

  6. Ago, H.; Nakamura, K.; Ikeda, K. I.; Uehara, N.; Ishigami, N.; Tsuji, M. Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 2005, 408, 433–438.

    CAS  Google Scholar 

  7. Franklin, A. D. The road to carbon nanotube transistors. Nature 2013, 498, 443–444.

    CAS  Google Scholar 

  8. He, M. S.; Wang, Y.; Zhang, X. Y.; Zhang, H.; Meng, Y. N.; Shang, D. H.; Xue, H.; Li, D.; Wu, Z. J. Stability of iron-containing nanoparticles for selectively growing single-walled carbon nanotubes. Carbon 2020, 158, 795–801.

    CAS  Google Scholar 

  9. Page, A. J.; Ohta, Y.; Irle, S.; Morokuma, K. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods. Acc. Chem. Res. 2010, 43, 1375–1385.

    CAS  Google Scholar 

  10. Wang, X.; He, M. S.; Ding, F. Chirality-controlled synthesis of single-walled carbon nanotubes-from mechanistic studies toward experimental realization. Mater. Today 2018, 21, 845–860.

    CAS  Google Scholar 

  11. Takagi, D.; Kobayashi, Y.; Homma, Y. Carbon nanotube growth from diamond. J. Am. Chem. Soc. 2009, 131, 6922–6923.

    CAS  Google Scholar 

  12. Liu, B. L.; Ren, W. C.; Gao, L. B.; Li, S. S.; Pei, S. F.; Liu, C.; Jiang, C. B.; Cheng, H. M. Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2082–2083.

    CAS  Google Scholar 

  13. Chen, Y. B.; Zhang, J. Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles. Carbon 2011, 49, 3316–3324.

    CAS  Google Scholar 

  14. Fiawoo, M. F. C.; Bonnot, A. M.; Amara, H.; Bichara, C.; Thibault-Pénisson, J.; Loiseau, A. Evidence of correlation between catalyst particles and the single-wall carbon nanotube diameter: A first step towards chirality control. Phys. Rev. Lett. 2012, 108, 195503.

    Google Scholar 

  15. He, M. S.; Magnin, Y.; Amara, H.; Jiang, H.; Cui, H. Z.; Fossard, F.; Castan, A.; Kauppinen, E.; Loiseau, A.; Bichara, C. Linking growth mode to lengths of single-walled carbon nanotubes. Carbon 2017, 113, 231–236.

    CAS  Google Scholar 

  16. He, M. S.; Magnin, Y.; Jiang, H.; Amara, H.; Kauppinen, E. I.; Loiseau, A.; Bichara, C. Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale 2018, 10, 6744–6750.

    CAS  Google Scholar 

  17. Amama, P. B.; Pint, C. L.; McJilton, L.; Kim, S. M.; Stach, E. A.; Murray, P. T.; Hauge, R. H.; Maruyama, B. Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett. 2009, 9, 44–49.

    CAS  Google Scholar 

  18. Hong, S. W.; Banks, T.; Rogers, J. A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 2010, 22, 1826–1830.

    CAS  Google Scholar 

  19. Zhou, W. W.; Ding, L.; Yang, S.; Liu, J. Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods. ACS Nano 2011, 5, 3849–3857.

    CAS  Google Scholar 

  20. Wu, B.; Geng, D. C.; Guo, Y. L.; Huang, L. P.; Chen, J. Y.; Xue, Y. Z.; Yu, G.; Liu, Y. Q.; Kajiura, H.; Li, Y. M. Ultrahigh density modulation of aligned single-walled carbon nanotube arrays. Nano Res. 2011, 4, 931–937.

    CAS  Google Scholar 

  21. Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.

    CAS  Google Scholar 

  22. Hu, Y.; Kang, L. X.; Zhao, Q. C.; Zhong, H.; Zhang, S. C.; Yang, L. W.; Wang, Z. Q.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y. et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat. Commun. 2015, 6, 6099.

    CAS  Google Scholar 

  23. Kang, L. X.; Hu, Y.; Zhong, H.; Si, J.; Zhang, S. C.; Zhao, Q. C.; Lin, J. J.; Li, Q. W.; Zhang, Z. Y.; Peng, L. M. et al. Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface. Nano Res. 2015, 8, 3694–3703.

    CAS  Google Scholar 

  24. Xie, Y.; Qian, L.; Lin, D. W.; Yu, Y.; Wang, S. S.; Zhang, J. Growth of homogeneous high-density horizontal SWNT arrays on sapphire through a magnesium-assisted catalyst anchoring strategy. Angew. Chem., Int. Ed. 2021, 60, 9330–9333.

    CAS  Google Scholar 

  25. Qian, L.; Shao, Q.; Yu, Y.; Liu, W. M.; Wang, S. S.; Gao, E. L.; Zhang, J. Spatially confined CVD growth of high-density semiconducting single-walled carbon nanotube horizontal arrays. Adv. Funct. Mater. 2022, 32, 2106643.

    CAS  Google Scholar 

  26. Liu, W. M.; Zhang, S. C.; Qian, L.; Lin, D. W.; Zhang, J. Growth of high-density horizontal SWNT arrays using multi-cycle in-situ loading catalysts. Carbon 2020, 157, 164–168.

    CAS  Google Scholar 

  27. Cao, Q.; Han, S. J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186.

    CAS  Google Scholar 

  28. Shulaker, M. M.; Wei, H.; Patil, N.; Provine, J.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Linear increases in carbon nanotube density through multiple transfer technique. Nano Lett. 2011, 11, 1881–1886.

    CAS  Google Scholar 

  29. Wang, C.; Ryu, K.; De Arco, L. G.; Badmaev, A.; Zhang, J. L.; Lin, X.; Che, Y. C.; Zhou, C. W. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer. Nano Res. 2010, 3, 831–842.

    CAS  Google Scholar 

  30. Guo, Y. F.; Shi, E. Z.; Zhu, J. D.; Shen, P. C.; Wang, J. T.; Lin, Y. X.; Mao, Y. W.; Deng, S. B.; Li, B. N.; Park, J. H. et al. Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts. Nat. Nanotechnol. 2022, 17, 331–331.

    CAS  Google Scholar 

  31. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    CAS  Google Scholar 

  32. Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

    Google Scholar 

  33. Khripin, C. Y.; Fagan, J. A.; Zheng, M. Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases. J. Am. Chem. Soc. 2013, 135, 6822–6825.

    CAS  Google Scholar 

  34. Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat. Nanotechnol. 2007, 2, 640–646.

    CAS  Google Scholar 

  35. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2003, 2, 338–342.

    CAS  Google Scholar 

  36. Hong, G.; Zhou, M.; Zhang, R. X.; Hou, S. M.; Choi, W.; Woo, Y. S.; Choi, J. Y.; Liu, Z. F.; Zhang, J. Separation of metallic and semiconducting single-walled carbon nanotube arrays by “Scotch tape”. Angew. Chem., Int. Ed. 2011, 50, 6819–6823.

    CAS  Google Scholar 

  37. Hu, Y.; Chen, Y. B.; Li, P.; Zhang, J. Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution. Small 2013, 9, 1306–1311.

    CAS  Google Scholar 

  38. Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

    CAS  Google Scholar 

  39. Otsuka, K.; Inoue, T.; Chiashi, S.; Maruyama, S. Selective removal of metallic single-walled carbon nanotubes in full length by organic film-assisted electrical breakdown. Nanoscale 2014, 6, 8831–8835.

    CAS  Google Scholar 

  40. Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R. Y.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

    CAS  Google Scholar 

  41. Zhang, Y. Y.; Zhang, Y.; Xian, X. J.; Zhang, J.; Liu, Z. F. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C. 2008, 112, 3849–3856.

    CAS  Google Scholar 

  42. Jin, S. H.; Dunham, S. N.; Song, J. Z.; Xie, X.; Kim, J. H.; Lu, C. F.; Islam, A.; Du, F.; Kim, J.; Felts, J. et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat. Nanotechnol. 2013, 8, 347–355.

    CAS  Google Scholar 

  43. Xie, X.; Jin, S. H.; Wahab, M. A.; Islam, A. E.; Zhang, C. X.; Du, F.; Seabron, E.; Lu, T. J.; Dunham, S. N.; Cheong, H. I. et al. Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes. Nat. Commun. 2014, 5, 5332.

    CAS  Google Scholar 

  44. Che, Y. C.; Wang, C.; Liu, J.; Liu, B. L.; Lin, X.; Parker, J.; Beasley, C.; Wong, H. S. P.; Zhou, C. W. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 2012, 6, 7454–7462.

    CAS  Google Scholar 

  45. Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.

    CAS  Google Scholar 

  46. Ibrahim, I.; Kalbacova, J.; Engemaier, V.; Pang, J. B.; Rodriguez, R. D.; Grimm, D.; Gemming, T.; Zahn, D. R. T.; Schmidt, O. G.; Eckert, J. et al. Confirming the dual role of etchants during the enrichment of semiconducting single wall carbon nanotubes by chemical vapor deposition. Chem. Mater. 2015, 27, 5964–5973.

    CAS  Google Scholar 

  47. Kang, L. X.; Zhang, S. C.; Li, Q. W.; Zhang, J. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/µm using ethanol/methane chemical vapor deposition. J. Am. Chem. Soc. 2016, 138, 6727–6730.

    CAS  Google Scholar 

  48. Li, W. S.; Hou, P. X.; Liu, C.; Sun, D. M.; Yuan, J. T.; Zhao, S. Y.; Yin, L. C.; Cong, H. T.; Cheng, H. M. High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors. ACS Nano 2013, 7, 6831–6839.

    CAS  Google Scholar 

  49. Sakurai, S.; Yamada, M.; Sakurai, H.; Sekiguchi, A.; Futaba, D. N.; Hata, K. A phenomenological model for selective growth of semiconducting single-walled carbon nanotubes based on catalyst deactivation. Nanoscale 2016, 8, 1015–1023.

    CAS  Google Scholar 

  50. Li, P.; Zhang, J. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water. J. Mater. Chem. 2011, 21, 11815–11821.

    CAS  Google Scholar 

  51. Zhou, W. W.; Zhan, S. T.; Ding, L.; Liu, J. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. J. Am. Chem. Soc. 2012, 134, 14019–14026.

    CAS  Google Scholar 

  52. Li, Y. M.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J. E.; Wang, D. W.; Yenilmez, E. et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4, 317–321.

    CAS  Google Scholar 

  53. Hong, G.; Zhang, B.; Peng, B. H.; Zhang, J.; Choi, W. M.; Choi, J. Y.; Kim, J. M.; Liu, Z. F. Direct growth of semiconducting single-walled carbon nanotube array. J. Am. Chem. Soc. 2009, 131, 14642–14643.

    CAS  Google Scholar 

  54. Wang, J. T.; Jin, X.; Liu, Z. B.; Yu, G.; Ji, Q. Q.; Wei, H. M.; Zhang, J.; Zhang, K.; Li, D. Q.; Yuan, Z. et al. Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nat. Catal. 2018, 1, 326–331.

    CAS  Google Scholar 

  55. Zhang, S. C.; Hu, Y.; Wu, J. X.; Liu, D.; Kang, L. X.; Zhao, Q. C.; Zhang, J. Selective scission of C−O and C−C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J. Am. Chem. Soc. 2015, 137, 1012–1015.

    CAS  Google Scholar 

  56. Qin, X. J.; Peng, F.; Yang, F.; He, X. H.; Huang, H. X.; Luo, D.; Yang, J.; Wang, S.; Liu, H. C.; Peng, L. M. et al. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports. Nano Lett. 2014, 14, 512–517.

    CAS  Google Scholar 

  57. Lin, D. W.; Yu, Y.; Li, L. Y.; Zou, M. Z.; Zhang, J. Growth of semiconducting single-walled carbon nanotubes array by precisely inhibiting metallic tubes using ZrO2 nanoparticles. Small 2021, 17, 2006605.

    CAS  Google Scholar 

  58. Kang, L. X.; Hu, Y.; Liu, L. L.; Wu, J. X.; Zhang, S. C.; Zhao, Q. C.; Ding, F.; Li, Q. W.; Zhang, J. Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts. Nano Lett. 2015, 15, 403–409.

    CAS  Google Scholar 

  59. Zhang, L. L.; Sun, D. M.; Hou, P. X.; Liu, C.; Liu, T. Y.; Wen, J. F.; Tang, N. J.; Luan, J.; Shi, C.; Li, J. C. et al. Selective growth of metal-free metallic and semiconducting single-wall carbon nanotubes. Adv. Mater. 2017, 29, 1605719.

    Google Scholar 

  60. Zhang, F.; Hou, P. X.; Liu, C.; Wang, B. W.; Jiang, H.; Chen, M. L.; Sun, D. M.; Li, J. C.; Cong, H. T.; Kauppinen, E. I. et al. Correction: Corrigendum: Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nat. Commun. 2016, 7, 11563.

    CAS  Google Scholar 

  61. Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

    CAS  Google Scholar 

  62. Zhang, S. C.; Wang, X.; Yao, F. R.; He, M. S.; Lin, D. W.; Ma, H.; Sun, Y. Y.; Zhao, Q. C.; Liu, K. H.; Ding, F. et al. Controllable growth of (n, n − 1) family of semiconducting carbon nanotubes. Chem 2019, 5, 1182–1193.

    CAS  Google Scholar 

  63. Zhu, Z. X.; Wei, N.; Cheng, W. J.; Shen, B. Y.; Sun, S. L.; Gao, J.; Wen, Q.; Zhang, R. F.; Xu, J.; Wang, Y. et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays. Nat. Commun. 2019, 10, 4467.

    Google Scholar 

  64. Huang, S. M.; Qian, Y.; Chen, J. Y.; Cai, Q. R.; Wan, L.; Wang, S.; Hu, W. B. Identification of the structures of superlong oriented single-walled carbon nanotube arrays by electrodeposition of metal and Raman spectroscopy. J. Am. Chem. Soc. 2008, 130, 11860–11861.

    CAS  Google Scholar 

  65. Chang, N. K.; Hsu, J. H.; Su, C. C.; Chang, S. H. Horizontally oriented carbon nanotubes coated with nanocrystalline carbon. Thin Solid Films 2009, 517, 1917–1921.

    CAS  Google Scholar 

  66. Chu, H. B.; Cui, R. L.; Wang, J. Y.; Yang, J.; Li, Y. Visualization of individual single-walled carbon nanotubes under an optical microscope as a result of decoration with gold nanoparticles. Carbon 2011, 49, 1182–1188.

    CAS  Google Scholar 

  67. Wang, J. T.; Li, T. Y.; Xia, B. Y.; Jin, X.; Wei, H. M.; Wu, W. Y.; Wei, Y.; Wang, J. P.; Liu, P.; Zhang, L. N. et al. Vapor-condensation-assisted optical microscopy for ultralong carbon nanotubes and other nanostructures. Nano Lett. 2014, 14, 3527–3533.

    CAS  Google Scholar 

  68. Liu, K. H.; Hong, X. P.; Zhou, Q.; Jin, C. H.; Li, J. H.; Zhou, W. W.; Liu, J.; Wang, E. G.; Zettl, A.; Wang, F. High-throughput optical imaging and spectroscopy of individual carbon nanotubes in devices. Nat. Nanotechnol. 2013, 8, 917–922.

    CAS  Google Scholar 

  69. Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 2001, 86, 1118–1121.

    CAS  Google Scholar 

  70. Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O’Brien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 2004, 306, 1540–1543.

    CAS  Google Scholar 

  71. Wu, W. Y.; Yue, J. Y.; Lin, X. Y.; Li, D. Q.; Zhu, F. Q.; Yin, X.; Zhu, J.; Wang, J. T.; Zhang, J.; Chen, Y. et al. True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Res. 2015, 8, 2721–2732.

    CAS  Google Scholar 

  72. Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.

    CAS  Google Scholar 

  73. Deng, S. B.; Tang, J. Y.; Kang, L. X.; Hu, Y.; Yao, F. R.; Zhao, Q. C.; Zhang, S. C.; Liu, K. H.; Zhang, J. High-throughput determination of statistical structure information for horizontal carbon nanotube arrays by optical imaging. Adv. Mater. 2016, 28, 2018–2023.

    CAS  Google Scholar 

  74. Jinkins, K. R.; Foradori, S. M.; Saraswat, V.; Jacobberger, R. M.; Dwyer, J. H.; Gopalan, P.; Berson, A.; Arnold, M. S. Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics. Sci. Adv. 2021, 7, eabh0640.

    CAS  Google Scholar 

  75. Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P. Dose-controlled, floating evaporative self-assembly, and alignment of semiconducting carbon nanotubes from organic solvents. Langmuir 2011, 30, 3460–3466.

    Google Scholar 

  76. Liu, L. J.; Han, J.; Xu, L.; Zhou, J. S.; Zhao, C. Y.; Ding, S. J.; Shi, H. W.; Xiao, M. M.; Ding, L.; Ma, Z. et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856.

    CAS  Google Scholar 

  77. Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.

    CAS  Google Scholar 

  78. Sato, Y.; Yanagi, K.; Miyata, Y.; Suenaga, K.; Kataura, H.; Iijima, S. Chiral-angle distribution for separated single-walled carbon nanotubes. Nano Lett. 2008, 8, 3151–3154.

    CAS  Google Scholar 

  79. Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095–4101.

    CAS  Google Scholar 

  80. Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349.

  81. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

    CAS  Google Scholar 

  82. Tans, S. J.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

    CAS  Google Scholar 

  83. Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

    CAS  Google Scholar 

  84. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    CAS  Google Scholar 

  85. Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G. et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

    CAS  Google Scholar 

  86. Holmes, D. S.; DeBenedictis, E. P. Superconductor electronics and the international roadmap for devices and systems. In 2017 16thInternational Superconductive Electronics Conference (ISEC), Naples, Italy, 2017.

  87. Liu, L. J.; Qiu, C. G.; Zhong, D. L.; Si, J.; Zhang, Z. Y.; Peng, L. M. Scaling down contact length in complementary carbon nanotube field-effect transistors. Nanoscale 2017, 9, 9615–9621.

    CAS  Google Scholar 

  88. Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. J. High-κ dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241–246.

    CAS  Google Scholar 

  89. Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447–450.

    CAS  Google Scholar 

  90. Franklin, A. D.; Bojarczuk, N. A.; Copel, M. Consistently low subthreshold swing in carbon nanotube transistors using lanthanum oxide. Appl. Phys. Lett. 2013, 102, 013108.

    Google Scholar 

  91. Franklin, A. D.; Luisier, M.; Han, S. J.; Tulevski, G.; Breslin, C. M.; Gignac, L.; Lundstrom, M. S.; Haensch, W. Sub-10 nm carbon nanotube transistor. Nano Lett. 2012, 12, 758–762.

    CAS  Google Scholar 

  92. Franklin, A. D.; Tulevski, G. S.; Han, S. J.; Shahrjerdi, D.; Cao, Q.; Chen, H. Y.; Wong, H. S. P.; Haensch, W. Variability in carbon nanotube transistors: Improving device-to-device consistency. ACS Nano 2012, 6, 1109–1115.

    CAS  Google Scholar 

  93. Franklin, A. D.; Koswatta, S. O.; Farmer, D. B.; Smith, J. T.; Gignac, L.; Breslin, C. M.; Han, S. J.; Tulevski, G. S.; Miyazoe, H.; Haensch, W. et al. Carbon nanotube complementary wrap-gate transistors. Nano Lett. 2013, 13, 2490–2495.

    CAS  Google Scholar 

  94. Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Philip Wong, H. S.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

    CAS  Google Scholar 

  95. Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.

    CAS  Google Scholar 

  96. Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

    CAS  Google Scholar 

  97. Shulaker, M. M.; Wu, T. F.; Pal, A.; Zhao, L.; Nishi, Y.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs. In 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2014.

  98. Shulaker, M. M.; Hills, G.; Park, R. S.; Howe, R. T.; Saraswat, K.; Wong, H. S. P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78.

    CAS  Google Scholar 

  99. Zhu, M. G.; Xiao, H. S.; Yan, G. P.; Sun, P. K.; Jiang, J. H.; Cui, Z.; Zhao, J. W.; Zhang, Z. Y.; Peng, L. M. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat. Electron. 2020, 3, 622–629.

    CAS  Google Scholar 

  100. Vandersypen, L.; Van Leeuwenhoek, A. Quantum computing—The next challenge in circuit and system design. in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2017, pp 24–26.

  101. Xie, Y. N.; Zhong, D. L.; Fan, C. W.; Deng, X. S.; Peng, L. M.; Zhang, Z. Y. Highly temperature-stable carbon nanotube transistors and gigahertz integrated circuits for cryogenic electronics. Adv. Electron. Mater. 2021, 7, 2100202.

    CAS  Google Scholar 

  102. Kim, S. H.; Haines, C. S.; Li, N.; Kim, K. J.; Mun, T. J.; Choi, C.; Di, J. T.; Oh, Y. J.; Oviedo, J. P.; Bykova, J. et al. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017, 357, 773–778.

    CAS  Google Scholar 

  103. Brady, G. J.; Way, A. J.; Safron, N. S.; Evensen, H. T.; Gopalan, P.; Arnold, M. S. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2016, 2, e1601240.

    Google Scholar 

  104. He, X. W.; Gao, W. L.; Xie, L. J.; Li, B.; Zhang, Q.; Lei, S. D.; Robinson, J. M.; Hároz, E. H.; Doorn, S. K.; Wang, W. P. et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638.

    CAS  Google Scholar 

  105. Si, J.; Zhong, D. L.; Xu, H. T.; Xiao, M. M.; Yu, C. X.; Zhang, Z. Y.; Peng, L. M. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors. ACS Nano 2018, 12, 627–634.

    CAS  Google Scholar 

  106. Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J. S.; Cao, T. Y.; Zhou, Z. Y.; Ta, T.; Streit, J. K. et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874–877.

    CAS  Google Scholar 

  107. Cheng, Z. H.; Pang, C. S.; Wang, P. Q.; Le, S. T.; Wu, Y. Q.; Shahrjerdi, D.; Radu, I.; Lemme, M. C.; Peng, L. M.; Duan, X. F. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 2022, 5, 416–423.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (Nos. 2022YFA1203302, 2022YFA1203304, and 2018YFA0703502), the National Natural Science Foundation of China (No. 52021006), the Strategic Priority Research Program of CAS (No. XDB36030100), and the Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXTD-202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Li, Y., Zhao, Z. et al. Pave the way to the batch production of SWNT arrays for carbon-based electronic devices. Nano Res. 16, 12516–12530 (2023). https://doi.org/10.1007/s12274-023-6173-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6173-1

Keywords

Navigation