Skip to main content
Log in

Thermally conducting polymer-matrix composites containing both AIN particles and SiC whiskers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Aluminum nitride particles (size 4 [µa.) and silicon carbide whiskers (diameter 1.4 (µm, length 18.6 µm) were used as fillers in a polyimide polymer matrix. Aluminum nitride in the amount of 50 vol.% decreased the coefficient of thermal expansion from 81 x 10-6 to 11.3 x lO-6/dgC and increased the thermal conductivity from 0.128 up to 1.76 W/(m.°C). Silicon carbide in the amount of 50 vol.% decreased the coefficient of thermal expansion from 81 x 10-6 to 18.1 x 10-6°C and increased the thermal conductivity from 0.128 up to 1.26 W/(m.°C). When both SiC whiskers and A1N particles in the 1:3 volume ratio and in the total amount of 50 vol.% were added to the polymer, the thermal conductivity increased from 0.128 to 2.23 W/(m.°C). These effects are attributed to the large aspect ratio of the SiC whiskers, which tended to bridge adjacent A1N particles and also act as a reinforcement to improve the toughness of the composite. On the other hand, the SiC whiskers in the mixed fillers also enhanced the toughness of the composites. The composite containing 50 vol.% A1N particles alone had a lower dielectric constant (7.1 at 100 kHz) than the composite containing 50 vol.% SiC whiskers alone (15.9 at 100 kHz). The composites containing a mixture of A1N particles and SiC whiskers at different ratios and in the total amount of 50 vol.% had lower values of the dielectric constant than the composite containing SiC whiskers alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Wong, John M. Segelken and John W. Balde,IEEE Trans. Components, Hibrids, and Manu. Techn, 12 (4), 421 (1989).

    Article  CAS  Google Scholar 

  2. C.J. Lee,J. Electron. Mater. Special Issue 82 (1988).

  3. M.M. Khan, T.S. Tarter and Homi Fatemi,Proc. Electron. Components Conf., May 1988, p. 103.

  4. S.R. Iyer, K.C.B. Dangayach and L. Abrego,6th Int. SAMPE Electron. Mater, and Proc. Conf., June 1992, p. 466.

  5. Randy D. Jester,6th Int. SAMPE Electron. Mater, and Proc. Conf., June 1992, p. 428.

  6. Thomas Ouellette and Misksa de Sorgo,Proc. Power Electron. Design Conf, 1985, p. 134.

  7. Roger West,Electronics 31 (1), 28 (1985).

    Google Scholar 

  8. P. Bujard,InterSociety Conf. Thermal Phenomena in the Fabrication and Operation of Electron. Comp., 1988, p. 41.

  9. P.BujardandJ.P. Ansermet,5thIEEESEMI-ThermalSymp., 1989, p. 126.

  10. Lin Li and D.D.L. Chung,4th Int. SAMPE Electron. Mater,and Proc. Conf, June 1990, p. 236.

  11. S.D. Mclvor, M.T. Danby, G.H. Wostenholm, B. Yates, L. Banfield, R. King and A. Webb,J. Mater. Sci. 25, 3127 (1990).

    Article  Google Scholar 

  12. John D. Bolt and Roger H. French,Adv. Mater. & Proc, 134 (1), (32) (1988).

    Google Scholar 

  13. Lin Li, Pay Yih and D.D.L. Chung,J. Electron. Mater. 21, 1065 (1992).

    CAS  Google Scholar 

  14. P.S. Turner,J. Res. Nat. Bur. Stand. 37, 239 (1946).

    CAS  Google Scholar 

  15. E.H. Kerner,Pre. Phys. Soc. B69, 808 (1956).

    Article  Google Scholar 

  16. H.W. Russell,J. Am. Ceram. Soc. 18, 1 (1935).

    Article  CAS  Google Scholar 

  17. T. Lewis and L. Nielsen,J. Appl. Polym. Sci. 14,1449 (1970).

    Article  CAS  Google Scholar 

  18. L. Nielsen,J. Appl. Phys. 41, 4626 (1970).

    Article  Google Scholar 

  19. L. Nielsen,J. Appl. Polym. Sci. 17, 3819 (1973).

    Article  Google Scholar 

  20. L. Nielsen,Ind. Eng. Chem. Fund. 13, 17 (1974).

    Article  CAS  Google Scholar 

  21. L. Nielsen,J. Comp. Mater. 1, 100 (1967).

    CAS  Google Scholar 

  22. L. Nielsen and B. Lee,J. Comp. Mater. 7, 136 (1962).

    Google Scholar 

  23. R.C. Progelhof, J.L. Throne and R.R. Ruetsch,Polym. Engr. & Sci. 16, 618 (1976).

    Google Scholar 

  24. T. Log and T.B. Jackson,J. Am. Ceram. Soc. 75 (5), 941 (1991).

    Article  Google Scholar 

  25. Application note 339-13, Hewlett Packard (1992).

  26. International Patent, PCT/US83/01693, May 1984.

  27. L. Holliday and J. Robinson,J. Mater. Sci. 8, 301 (1973).

    Article  CAS  Google Scholar 

  28. R.M. Eichhorn,Engineering Dielectrics, Vol. 2(A), ed. R. Bartinkas, (Philadelphia: ASTM, 1983), p. 15.

    Google Scholar 

  29. K.A. Buckinghan,Thermoplastics (Properties andDesign), ed. R.M. Ogorkiewicz, (John Wiley & Sons, 1974), p. 111.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Chung, D.D.L. Thermally conducting polymer-matrix composites containing both AIN particles and SiC whiskers. J. Electron. Mater. 23, 557–564 (1994). https://doi.org/10.1007/BF02670659

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02670659

Key words

Navigation