Skip to main content
Log in

Review on nanostructured semiconductors for dye sensitized solar cells

  • Review Paper
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Nanostructured semiconductors with different morphologies are used widely in various applications in order to enhance their technological advancements compared with the bulk sample. This flourishing nanoscience field has enabled rapid developments that have created numerous opportunities for scienctific advancements with various devices. Considering large environmental impacts such as global warming, problems of nuclear waste storage and nuclear accidents, there is an urgent need for environmentally sustainable energy technologies such as solar cells and fuel cells. In the present paper, the role of nanostructured semiconductors in dyesensitized solar cells (DSSCs) is reviewed entensively. The review discusses the present developmental prospects of DSSCs and the problems associated with its layer materials and propose a method of overcoming these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Lycurgus Cup, Trustees of the British Museum, http://www.britishmuseum.org/explore/highlights/highlight_objects/pe_mla/t/the_lycurgus_cup.aspx (2012).

  2. José-Yacamán, L. Rendón, and J. Arenas, Science, 273, 223 (1996).

    Article  Google Scholar 

  3. C. N. R. Rao, G. U. Kulkarni, and P. J. Thomas, Nanocrystals: Synthesis, Properties and Applications, p. 2, Springer-Verlag, Berlin, Heidelberg (2007).

    Google Scholar 

  4. M. Faraday, Philos. Trans. R. Soc. London, 147, 145 (1857).

    Article  Google Scholar 

  5. The Royal Institution of Great Britain, http://www.rigb.org/rimain/heritage/faradaypage.jsp (2008).

  6. Z. Bredig, Angew. Chem. 11, 951 (1898).

    Google Scholar 

  7. Donau, Monatsh 25, 525 (1905).

    Article  Google Scholar 

  8. Z. Zsigmondy, Phys. Chem. 56, 65 (1906).

    Google Scholar 

  9. G. Mie, Ann. Phys. 25, 377 (1908).

    Article  Google Scholar 

  10. R. Gans, Ann. Phys. 31, 881 (1911); 47, 270 (1915).

    Google Scholar 

  11. K. E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation p. 511, Wiley-VCH, Weinheim (1992).

    Google Scholar 

  12. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).

    Article  Google Scholar 

  13. G. Binning, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  Google Scholar 

  14. T. Pradeep, Nano: The Essentials, p. 4, Tata McGraw Hill, NewDelhi (2007).

    Google Scholar 

  15. H. Gleiter, Proc. Second Risoe International symposiym on Metallurgy and Materials Science (Ed.) N. Hansen et al. p. 15, Risoe Nat Lab, Roskilde (1981).

    Google Scholar 

  16. K. Eric Drexler, Engine of Creation: The Coming Era of Nanotechnology, Anchor Books, USA (1986).

    Google Scholar 

  17. H. Gleiter, Nanostructured Mater. 6, 3 (1995); Prog. Mater. Sci. 33, 223 (1989).

    Article  Google Scholar 

  18. R. W. Siegel, Annu. Rev. Mater. Sci. 21, 559 (1991).

    Article  Google Scholar 

  19. A. C. Pierre, Introduction to Sol-Gel Processing, p.11, Kluwer Academic Publishers, Boston (1998).

    Google Scholar 

  20. B. E. Yoldas, J. Mater. Sci. 21, 1080 (1986).

    Article  Google Scholar 

  21. C. J. Brinker and J. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, p. 2, Academic Press, Boston, London (1990).

    Google Scholar 

  22. C. J. Brinker, K. D. Keefer, D. W. Schaefer, R. A. Assink, B. D. Kay, and C. S. Ashley, J. Non-Cryst. Solids 63, 45 (1984).

    Article  Google Scholar 

  23. R. K. Iler, The Chemistry of Silica, p. 334, Wiley, New York (1979).

    Google Scholar 

  24. S. Utamapanya, K. J. Klabunde, and J. R. Schlup, Chem. Mater. 3, 175 (1991).

    Article  Google Scholar 

  25. P. Guo, P. Chen, and Minghua Liu, Nanoscale Res. Lett. 6, 529 (2011).

    Article  Google Scholar 

  26. C. Koch, Ann. Rev. Mater. Sci. 19, 121 (1989).

    Article  Google Scholar 

  27. B. S. Murty and S. Ranganathan, Int. Mater. Rev. 43, 101 (1998).

    Article  Google Scholar 

  28. M. Sherif El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, p. 8, Noyes publications, USA (2001).

    Google Scholar 

  29. L. E. Burs, J. Chem. Phys. 79, 5566 (1983); J. Chem. Phys. 80, 4403 (1984).

    Article  Google Scholar 

  30. S. Ramasamy and B. Purniah, in “Nanomaterials”, edited by D. Chakravorty, p. 85, Indian National Science Academy, New Delhi (2001).

    Google Scholar 

  31. A. Tschöpe, J. Y. Ying, and H. L. Tuller, Sens. Actuators B, 31, 111 (1996).

    Article  Google Scholar 

  32. R. N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel, and T. Nagarajan, Nanostruct. Mater. 6, 993 (1995).

    Article  Google Scholar 

  33. L. M. Levinson and H. R. Philip, Ceram. Bull. 65, 639 (1986).

    Google Scholar 

  34. C. Suryanarayana and C. C. Koch, Hyperfine Interactions 130, 5 (2000).

    Article  Google Scholar 

  35. K. Lu, Y. Z. Wang, W. D. Wei, and Y. Y. Li, Adv. Cryog. Mater. 38, 285 (1991).

    Google Scholar 

  36. X. D. Liu, B. Z. Ding, Z. Q. Hu, K. Lu, and Y. Z. Wang, Physica B 192, 345 (1993).

    Article  Google Scholar 

  37. M. Grätzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  38. C. Alejandro, UD-led Team Sets Solar Cell Record, Joins DuPont on $100 million project, http://www.udel.edu/PR/UDaily/2008/jul/solar072307.html (2008).

  39. B. O’Regan and M. Grätzel, Nature 335, 737 (1991).

    Article  Google Scholar 

  40. K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist, and A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73, 51 (2002).

    Article  Google Scholar 

  41. R. S. Mane, C. D. Lokhande, and S. H. Han, Solar Energy 80, 185 (2006).

    Article  Google Scholar 

  42. P. Guo and M. A. Aegerter, Thin Solid Films 351, 290 (1999).

    Article  Google Scholar 

  43. R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).

    Article  Google Scholar 

  44. F. T. Kong, S. Y. Dai, and K. J. Wang, Adv. in Opto Elec., Article ID 75384 (2007).

  45. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nature Mater. 4, 455 (2005).

    Article  Google Scholar 

  46. J. H. Park, T. W. Lee, and M. G. Kang, Chem. Commun. 25, 2867 (2008).

    Article  Google Scholar 

  47. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, J. Am. Chem. Soc. 115, 6382 (1993).

    Article  Google Scholar 

  48. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, and M. Grätzel, J. Am. Chem. Soc. 127, 16835 (2005).

    Article  Google Scholar 

  49. P. Wang, S. M. Zakeeruddin, R. H. Baker, J. E. Moser, and M. Grätzel, Adv. Mater. 15, 2101 (2003).

    Article  Google Scholar 

  50. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, Nature Mater. 2, 402 (2003).

    Article  Google Scholar 

  51. C. Klein, M. K. Nazeeruddin, P. Liska, and M. Grätzel, Inorg. Chem. 44, 178 (2005).

    Article  Google Scholar 

  52. M. K. Nazeeruddin, Q. Wang, L. Cevey, and M. Grätzel, Inorg. Chem. 45, 787 (2006).

    Article  Google Scholar 

  53. P. Wang, S. M. Zakeeruddin, J. E. Moser, and M. Grätzel, Adv. Mater., 16, 1806 (2004).

    Article  Google Scholar 

  54. D. Kuang, S. Ito, B. Wenger, and M. Grätzel, J. Am. Chem. Soc, 128, 4146 (2006).

    Article  Google Scholar 

  55. D. Kuang, C. Klein, H. J. Snaith, and M. Grätzel, Nano Letters 6, 769 (2006).

    Article  Google Scholar 

  56. K. J. Jiang, N. Masaki, J. B. Xia, S. Noda, and S. Yanagida, Chem. Commun. 23, 2460 (2006).

    Article  Google Scholar 

  57. P. Wang, C. Klein, and J. E. Moser, J. Phys. Chem. B 108, 17553 (2004).

    Article  Google Scholar 

  58. M. Grätzel, J. Photochem. Photobio. C: Photochem. Rev. 4, 145 (2003).

    Article  Google Scholar 

  59. K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, Chem. Lett. 5, 471 (1997).

    Article  Google Scholar 

  60. U. Bach, D. Lupo, P. Comte, and M. Grätzel, Nature 395, 583 (1998).

    Article  Google Scholar 

  61. B. O’Regan and D. Swartz, J. Appl. Phys. 80, 4749 (1996).

    Article  Google Scholar 

  62. M. Grätzel, Curr. Appl. Phys. 6S1, e2 (2006).

    Article  Google Scholar 

  63. K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, and P. M. Srimannae, Semicond. Sci. Technol. 10, 1689 (1995).

    Article  Google Scholar 

  64. K. Tennakone, G. R. R. A. Kumara, I. R. M. kottegoda, K. G. U. Wijayantha, and V. P. S. Perera, J. Phys. D: Appl. Phys. 31, 1492 (1998).

    Article  Google Scholar 

  65. A. Fujishima and X. T. Zhang, Proc. Jpn. Acad., Ser. B, 81, 33 (2005).

    Article  Google Scholar 

  66. Y. Ren, Z. Zhang, E. Gao, S. Fang, and S. Cai, J. Appl. Electrochem. 31, 445 (2001).

    Article  Google Scholar 

  67. D. Gebeyehu, C. J. Brabec, and N. S. Sariciftci, Thin Solid Films 403, 271 (2002).

    Article  Google Scholar 

  68. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, Nano Letters 2, 1259 (2002).

    Article  Google Scholar 

  69. J. K. Kim, M. S. Kang, Y. J. Kim, J. Won, and Y. S. Kang, Solid State Ionics 176, 579 (2005).

    Article  Google Scholar 

  70. N. Ikeda and T. Miyasaka, Chem. Commun. 14, 1886 (2005).

    Article  Google Scholar 

  71. H. Han, W. Liu, J. Zhang, and X. Z. Zhao, Adv. Func. Mater. 15, 1940 (2005).

    Article  Google Scholar 

  72. M. S. Kang, J. H. Kim, Y. J. Kim, J. Won, N. G. Park, and Y. S. Kang, Chem. Commun. 7, 889 (2005).

    Article  Google Scholar 

  73. G. P. Kalaignan, M. S. Kang, and Y. S. Kang, Solid State Ionics, 177, 1091 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, T. Review on nanostructured semiconductors for dye sensitized solar cells. Electron. Mater. Lett. 8, 231–243 (2012). https://doi.org/10.1007/s13391-012-1038-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-1038-x

Keywords

Navigation