Skip to main content
Log in

Zirconium oxides formed by hydrolytic condensation of alkoxides and parameters that affect their morphology

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

When zirconium oxides are formed via hydrolytic condensation of zirconium alkoxides, the particle size and morphology of the resultant zirconia is strongly affected by certain parameters during the condensation. These parameters include: the type of alkyl group in the alkoxide, water/alkoxide ratio, molecular separation of species, and the reaction temperature. The particle size and the morphology in turn affect the sintering behaviour and crystalline transformation of ZrO2, In this work the parameters that affect the formation of ZrO2 from zirconium alkoxides are investigated. It has been shown that the alkyl groups and molecular separations during the hydrolytic polycondensation have particular significance in the modification of monoclinic → tetragonal transformation of the resultant ZrO2. Tetragonal phase can also be stabilized by copolymerization of ZrO2 with SiO2 producing tough ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Bradley, R. C. Mehrota andD. P. Gaur, “Metal Alkoxides” (Academic Press, New York, 1978) p. 30.

    Google Scholar 

  2. D. C. Bradley andW. Wardlaw,J. Chem. Soc. 73 (1951) 280.

    Google Scholar 

  3. D. C. Bradley, in “Metal-Organic Compounds” Advances in Chemistry, Series 23 (American Chemical Society, Washington, DC, 1959) pp. 10–36.

    Google Scholar 

  4. K. S. Mazdiyasni, C. T. Lynch andJ. S. Smith,J. Amer. Ceram. Soc. 48 (7) (1965) 372.

    Google Scholar 

  5. Idem, ibid. 50(10) (1967) 532.

    Google Scholar 

  6. B. E. Yoldas,ibid. 65(8) (1982) 387.

    Google Scholar 

  7. D. C. Bradley andD. G. Carter,Can. J. Chem. 39 (1961) 1434.

    Google Scholar 

  8. Idem, ibid. 40 (1962) 15.

    Google Scholar 

  9. B. E. Yoldas,J. Non-Cryst. Solids 51 (1982) 105.

    Google Scholar 

  10. Idem,ibid. in press.

  11. Idem, ibid. 63 (1984) 145.

    Google Scholar 

  12. Idem, Material Research Society Symposium Proceedings (Elsevier Science, New York, 1984) Vol. 24, p. 291.

    Google Scholar 

  13. E. A. Barringer, N. Jubb, B. Fegley, R. L. Pober andH. K. Brown, in “Ultrastructure Processing of Ceramics, Glasses, and Composites” edited by L. Hench and D. Ulrich (Wiley, New York, 1984) pp. 315–333.

    Google Scholar 

  14. T. K. Gupta,Sci. Sinter. 10 (1978) 205.

    Google Scholar 

  15. K. S. Mazdiyasni, in “Reactivity of Solids” Proceedings of the VI International Symposium on the Reactivity of Solids, Schenectady, January, 1969, edited by J. W. Mitchell (Wiley-Interscience, New York) pp. 115–25.

    Google Scholar 

  16. E. C. Sabbarao, H. S. Maiti andK. K. Srivastava,Phys. Status Solidi 21 (1974) 9.

    Google Scholar 

  17. T. K. Gupta, F. F. Lange andJ. H. Bechtold,J. Mater. Sci. 13 (1978) 1464.

    Google Scholar 

  18. F. F. Lange,J. Mater. Sci. 17 (1982) 225.

    Google Scholar 

  19. D. L. Porter andA. H. Heuer,J. Amer. Ceram. Soc. 62 (1979) 295.

    Google Scholar 

  20. D. C. Bradley,Nature 182 (1958) 1211.

    Google Scholar 

  21. D. C. Bradley, R. C. Mehrota, J. D. Swanwick andW. Wardlaw,J. Chem. Soc. 73 (1953) 2025.

    Google Scholar 

  22. W. Wardlaw,ibid. (1956) 4004.

  23. E. C. Sabbarao, H. S. Maiti andK. K. Srivastava,Phys. Status Solidi A21 (1974) 9.

    Google Scholar 

  24. G. K. Bansal andA. H. Heuer,Acta Metall. 20(11) (1972) 1281.

    Google Scholar 

  25. R. C. Garvie, R. H. Hannink andR. T. Pascoe,Nature 258 (1975) 703.

    Google Scholar 

  26. D. L. Porter andA. H. Heuer,J. Amer. Ceram. Soc. 60(6-3) (1977) 183.

    Google Scholar 

  27. T. Mitsuhashi, M. Ichihara andU. Tatsuke,J. Amer. Ceram. Soc. 57 (2) (1974) 97.

    Google Scholar 

  28. H. Knapp andV. Dehlinger,Acta Metall. 4 (1956) 289.

    Google Scholar 

  29. G. B. Olson andM. Cohen,Met. Trans. 7A (1976) 1897.

    Google Scholar 

  30. B. E. Yoldas,J. Mater. Sci. 4 (1979) 1843.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoldas, B.E. Zirconium oxides formed by hydrolytic condensation of alkoxides and parameters that affect their morphology. J Mater Sci 21, 1080–1086 (1986). https://doi.org/10.1007/BF01117398

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117398

Keywords

Navigation