Skip to main content
Log in

An efficient meshless method based on RBFs for the time fractional diffusion-wave equation

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

This paper proposes a numerical method to deal with time-fractional diffusion-wave equation (one-dimensional and two-dimensional). The time-fractional term of the problem is scheduled in Caputo sense which is popular in analyzing time-fractional dependent problems. The proposed technique is based on radial basis functions and more, it is a kind of meshless method, therefore it is not difficult applying the method to handle two or three dimensional time-fractional diffusion-wave problems especially when the domain are more general and not regular forms. The generalized thin plate splines (GTPS) radial basis functions are employed. Numerical examples are given to test the accuracy. Three numerical experiments reveal that proposed method is very convenient for solving such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance III: the diffusion limit. In: Kohlmann, M., Tang, S. (eds.) Mathematical Finance. Trends in Mathematics, pp. 171–180. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  2. Sabatelli, L., Keating, S., Dudley, J., Richmond, P.: Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–275 (2002)

    MathSciNet  Google Scholar 

  3. Aslefallah, M., Rostamy, D.: A numerical scheme for solving space-fractional equation by finite differences theta-method. Int. J. Adv. Aply. Math. Mech. 1(4), 1–9 (2014)

    MATH  Google Scholar 

  4. Aslefallah, M., Rostamy, D.: Numerical solution for Poisson fractional equation via finite differences theta-method. J. Math. Com. Sci. TJMCS 12(2), 132–142 (2014)

    Article  Google Scholar 

  5. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  6. Aslefallah, M., Shivanian, E.: Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions. Eur. Phys. J. Plus 130(3), 1–9 (2015)

    Article  Google Scholar 

  7. Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains. J. Comput. Appl. Math. 193(1), 243–268 (2006)

    Article  MathSciNet  Google Scholar 

  8. Meerschaert, M.M., Tadjeran, C.: Finite Difference Approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  Google Scholar 

  9. Zeng, S., Baleanu, D., Bai, Y., Wua, G.: Fractional differential equations of Caputo-Katugampola type and numerical solutions. Appl. Math. Comput. 315, 549–554 (2017). https://doi.org/10.1016/j.amc.2017.07.003

    Article  MathSciNet  Google Scholar 

  10. Ahmadian, A., Ismail, F., Salahshour, S., Baleanu, D., Ghaemi, F.: Uncertain viscoelastic models with fractional order: A new spectral tau method to study the numerical simulations of the solution. Commun. Nonlinear Sci. Numer. Simul. 53, 44–64 (2017). https://doi.org/10.1016/j.cnsns.2017.03.012

    Article  MathSciNet  Google Scholar 

  11. Kumar, D., Singh, J., Baleanu, D.: A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math. Meth. Appl. Sci. 40, 5642–5653 (2017). https://doi.org/10.1002/mma.4414

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo-Cheng, Wu, Baleanu, Dumitru, Luo, Wei-Hua: Lyapunov functions for RiemannLiouville-like fractional difference equations. Appl. Math. Comput. 314, 228–236 (2017). https://doi.org/10.1016/j.amc.2017.06.019

    Article  MathSciNet  Google Scholar 

  13. Ciment, M., Leventhal, S.H.: Higher order compact implicit schemes for the wave equation. Math. Comp. 29, 985–994 (1975)

    Article  MathSciNet  Google Scholar 

  14. Ciment, M., Leventhal, S.H.: A note on the operator compact implicit method for the wave equation. Math. Comp. 32, 143–147 (1978)

    Article  MathSciNet  Google Scholar 

  15. Dahlquist, G.: On accuracy and unconditional stability of linear multi-step methods for second order differential equations. BIT 18, 133–136 (1978)

    Article  MathSciNet  Google Scholar 

  16. Mohanty, R.K., Jain, M.K., Arora, U.: An unconditionally stable ADI method for the linear hyperbolic equation in three space dimensions. Int. J. Comput. Math. 79, 133–142 (2002)

    Article  MathSciNet  Google Scholar 

  17. Liu, G., Gu, Y.: An introduction to meshfree methods and their programing. Springer, New York (2005)

    Google Scholar 

  18. Nayroles, B., Touzot, G., Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech. 10, 307–318 (1992)

    Article  MathSciNet  Google Scholar 

  19. Duarte, C., Oden, J.: An h-p adaptative method using clouds. Comput. Methods Appl. Mech. Eng. 139, 237–262 (1996)

    Article  Google Scholar 

  20. Atluri, S.N., Zhu, T.L.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)

    Article  MathSciNet  Google Scholar 

  21. Abbasbandy, S., Sladek, V., Shirzadi, A., Sladek, J.: Numerical simulations for coupled pair of diffusion equations by MLPG method. CMES Compt. Model. Eng. Sci. 71(1), 15–37 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Shirzadi, A., Ling, L., Abbasbandy, S.: Meshless simulations of the two-dimensional fractional-time convectiondiffusion- reaction equations. Eng. Anal. Bound. Elem. 36, 1522–1527 (2012)

    Article  MathSciNet  Google Scholar 

  23. Zhu, T., Zhang, J.D., Atluri, S.N.: A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach. Comput. Mech. 21, 223–235 (1998)

    Article  MathSciNet  Google Scholar 

  24. Melenk, J.M., Babǔska, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139, 289–314 (1996)

    Article  MathSciNet  Google Scholar 

  25. Kansa, E.J.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II. J. Comput. Math. Appl. 19, 147–161 (1990)

    Article  Google Scholar 

  26. Aslefallah, M., Shivanian, E.: A nonlinear partial integro-differential equation arising in population dynamic via radial basis functions and theta-method. J. Math. Com. Sci. TJMCS 13(1), 14–25 (2014)

    Article  Google Scholar 

  27. Hosseini, V.R., Chen, W., Avazzadeh, Z.: Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Boundary Elem. 38, 31–39 (2014)

    Article  MathSciNet  Google Scholar 

  28. Abbasbandy, S., Ghehsareh, H.R., Hashim, I.: Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function. Eng. Anal. Boundary Elem. 36(12), 1811–1818 (2012)

    Article  MathSciNet  Google Scholar 

  29. Abbasbandy, S., Ghehsareh, H.R., Hashim, I.: A meshfree method for the solution of two-dimensional cubic nonlinear schrödinger equation. Eng. Anal. Boundary Elem. 37(6), 885–898 (2013)

    Article  MathSciNet  Google Scholar 

  30. Kansa, E.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127–145 (1990)

    Article  MathSciNet  Google Scholar 

  31. Dehghan, M., Shokri, A.: A numerical method for solution of the two dimensional sine-Gordon equation using the radial basis functions. Mathematics and Computers inSimulation 79, 700–715 (2008)

    Article  MathSciNet  Google Scholar 

  32. Lucy, L.B.: A numerical approach to the testing of fusion process. Astron. J. 88, 1013–1024 (1977)

    Article  Google Scholar 

  33. Liu, W.K., Jun, S., Zhang, Y.F.: Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 21, 1081–1106 (1995)

    Article  MathSciNet  Google Scholar 

  34. Liu, G.R.: Mesh Free Methods: Moving beyond the Finite Element Method. CRC Press, Boca Raton (2003)

    MATH  Google Scholar 

  35. Shivanian, E.: Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng. Anal. Boundary Elem. 37, 1693–1702 (2013)

    Article  MathSciNet  Google Scholar 

  36. Dehghan, M., Ghesmati, A.: Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput. Phys. Commun. 181, 772–786 (2010)

    Article  MathSciNet  Google Scholar 

  37. Shivanian, E., Aslefallah, M.: Stability and convergence of spectral radial point interpolation method locally applied on two-dimensional pseudoparabolic equation. Numer. Methods Partial Differ. Eq. 33, 724–741 (2017). https://doi.org/10.1002/num.22119

    Article  MathSciNet  MATH  Google Scholar 

  38. Heydari, M.H., Hooshmandasl, M.R., Maleki Ghaini, F.M., Cattani, C.: Wavelets method for the time fractional diffusion-wave equations. Phys. Lett. A 379, 71–76 (2015)

    Article  MathSciNet  Google Scholar 

  39. Hu, X., Zhang, L.: On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems. Appl. Math. Comput. 218, 5019–5034 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, 1737–1748 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Aslefallah, M., Rostamy, D., Hosseinkhani, K.: Solving time-fractional differential diffusion equation by theta-method. Int. J. Adv. Aply. Math. Mech. 2(1), 1–8 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  43. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Aslefallah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslefallah, M., Shivanian, E. An efficient meshless method based on RBFs for the time fractional diffusion-wave equation. Afr. Mat. 29, 1203–1214 (2018). https://doi.org/10.1007/s13370-018-0616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-018-0616-y

Keywords

Mathematics Subject Classifcation

Navigation