Skip to main content
Log in

Mixed Convection and Double Diffusion Impacts on Williamson–Sutterby Nanofluid with Activation Energy, Cattaneo–Christov Heat Flux, and a Magnetic Dipole

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Current theoretical and computational investigation within the Darcy–Forchheimer medium through electromagnetic fields reveals the heat and mass transportation characteristics for the flow of Williamson–Sutterby nanofluid under the effects of Cattaneo–Christov double diffusion, radiation heat flux, magnetic dipole and convective boundary over a stretchy surface are taken into account. Cattaneo–Christov heat mass flux model is applied to shape the thermal and nanoparticle concentration equations. The prime purpose of the current study is to enhance the rate of heat transfer in industrial processes. Mechanism of thermal insulation, pharmacological processes, pace technology, crushing, nuclear reactor cooling, pharmaceutical procedures, geothermal reservoirs to enhance oil recovery with chemically reactive systems has great importance in mass transport. Moreover, the mass transportation is made by Arrhenius activation energy and binary chemical reaction. Additionally, the influences of bioconvection of self-propelled microorganisms are considered. The nanofluids with swimming microorganisms have great significance in microfluidics devices, medicine, cancer therapy, biotechnology applications such as biofuels and enzyme biosensor. The amalgamation of Sutterby–Williamson nanoparticles and microorganism with slight homogeneous diffusion exhibit the novelty of present work. Nonlinear PDEs are transformed into coupled ODEs by using similarity functions. The attained equations are then solved numerically with the help of software. Hartmann, Sutterby Reynolds, Sutterby Deborah, bioconvection Rayleigh numbers, mixed convection, porosity, ferrohydrodynamic interaction, buoyancy ratio and inertial resistance parameters slow down the flow of fluids. But reverse effects were observed for temperature, concentration and motile density profiles for Hartmann, porosity and ferrohydrodynamic interaction parameters. These theoretical outcomes play a vital role in industrial applications to enhance the heat/mass process, biomedical flows, heating and cooling systems, chemical processes and mining industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\alpha ^{'}\) :

Dimensionless distance

\(\alpha ^{*}\) :

Mixed convection parameter

\(\beta _\text {d}\) :

Ferrohydrodynamic interaction variable

\(\delta _1\) :

Temperature difference parameter

\(\epsilon _1\) :

Temperature difference variable

\(\eta \) :

Similarity variable

\(\Gamma \) :

Fluid relaxation time

\(\lambda \) :

Williamson parameter

\(\lambda ^{'}\) :

Viscous dissipation factor

\(\lambda _\text {o}\) :

Magnetic permeability

\(\mu \) :

Dynamic viscosity

\(\Omega \) :

concentration difference of motile microorganism

\(\phi \) :

Dimensionless nanoparticle concentration

\(\Phi ^*\) :

Magnetic scalar potential

\(\Psi \) :

Dimensionless density of microorganism

\(\psi \) :

Stream function

\(\rho _\text {f}\) :

Base liquid density

\(\rho _\text {m}\) :

Density of microorganisms

\(\rho _\text {p}\) :

Nanoparticle mass density

\(\sigma \) :

Chemical reaction rate constant

\(\sigma ^*\) :

Stefan–Boltzmann constant

\(\sigma _\text {m}\) :

Magnetic permeability

\(\tau \) :

Parameter defined by ratio between \((\rho C)_\text {p}\) and \((\rho C)_\text {f}\)

\(\tau _\text {w}\) :

Wall shear stress

\(\theta \) :

Dimensionless temperature of the fluid

\(\infty \) :

Ambient

p:

Nanoparticles

w:

On the wall

a :

Positive constant

\(B_0\) :

Uniform transverse magnetic field

\(b_1\) :

Chemotaxis constant

c :

Distance

\(C_\infty \) :

Ambient concentration

\(C_\text {F}\) :

Forchheimer quantity

\(C_\text {p}\) :

Specific heat

\(C_\text {w}\) :

Wall concentration

\(C_\text {{fx}}\) :

Velocity gradient

\(D_\text {B}\) :

Brownian coefficient

\(D_\text {N}\) :

Microorganism diffusion coefficient

\(D_\text {T}\) :

Thermophoretic diffusion coefficient

De :

Deborah number

\(E_0\) :

Electric field

\(E_1\) :

Electric parameter

Ea:

Activation energy

Ec:

Eckert number

\(F^*\) :

Inertia parameter

H :

Magnetic field

Ha:

Hartmann number

k :

Thermal conductivity

\(k^{'}\) :

Absorbent medium of permeability

\(K_1\) :

Pyromagnetic coefficient

\(k_2\) :

Concentration jump length

\(k_3\) :

Motile density jump length

\(k_\text {o}\) :

Thermal jump length

Lb:

Bioconvection Lewis number

M :

Magnetization

m :

Fitted rate constant

N :

Density of microorganism

\(N_\infty \) :

Ambient density

\(N_\text {b}\) :

Brownian movement variable

\(N_\text {o}\) :

Slip length

\(N_\text {r}\) :

Buoyancy ratio parameter

\(N_\text {t}\) :

Thermophoresis variable

\(N_\text {w}\) :

Wall density

\(\text {Nn}_\text {x}\) :

Density gradient

\(\text {Nu}_\text {x}\) :

Thermal gradient

Pe:

Peclet number

Pr:

Prandtl number

\(q_\text {m}\) :

Local mass flux

\(q_\text {n}\) :

Motile microorganism flux

\(q_\text {w}\) :

Local heat flux

Rb:

Rayleigh number

Rd:

Radiation parameter

\(\text {Re}_\text {x}\) :

Local Reynolds number

S :

Flow deportment index

Sc:

Schmidt number

\(\text {Sh}_\text {x}\) :

Solutal gradient

\(T_\infty \) :

Ambient temperature

\(T_\text {w}\) :

Surface Temperature

uv :

Velocity components

\(U_\text {w}\) :

Wall velocity

\(W_\text {c}\) :

Maximum cell swimming speed

xy :

Space coordinates

ODEs:

Ordinary differential equations

PDEs:

Partial differential equations

BVP:

Boundary value problem

CCDD:

Cattaneo–Christov double diffusion

CCHF:

Cattaneo–Christov heat flux

MHD:

Magnetohydrodynamics

RKF:

Runge–Kutta–Fehlberg

BCs:

Boundary conditions

BL:

Boundary layer

MF:

Magnetic field

References

  1. Choi, S.U.; Eastman, J.A.: Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne National Lab, Argonne, IL (1995)

    Google Scholar 

  2. Wang, C.Y.: Free convection on a vertical stretching surface. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech.. 69(11), 418–20 (1989)

  3. Khan, W.A.; Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. H. Mass Transf. 53(11–12), 2477–83 (2010)

    Article  MATH  Google Scholar 

  4. Akbar, N.S.; Ebaid, A.; Khan, Z.H.: Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet. J. Magn. Magn. Mater. 15(382), 355–8 (2015)

    Article  Google Scholar 

  5. Mustafa, M.: Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. AJP Adv. 5(4), 047109 (2015)

    Google Scholar 

  6. Narayana, K.L.; Gangadhar, K.; Subhakar, M.J.: Effect of viscous dissipation on heat transfer of Magneto-Williamson nano fluid. IOSR J. Math. 11(4), 25–37 (2015)

    Google Scholar 

  7. Salahuddin, T.; Malik, M.Y.; Hussain, A.; Bilal, S.; Awais, M.: MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: using numerical approach. J. Magn. Magn. Mater. 1(401), 991–7 (2016)

    Article  Google Scholar 

  8. Saleem, S.; Awais, M.; Nadeem, S.; Sandeep, N.; Mustafa, M.T.: Theoretical analysis of upper-convected Maxwell fluid flow with Cattaneo-Christov heat flux model. Chin. J. Phys. 55(4), 1615–25 (2017)

    Article  Google Scholar 

  9. Makinde, O.D.; Nagendramma, V.; Raju, C.S.; Leelarathnam, A.: Effects of Cattaneo-Christov heat flux on Casson nanofluid flow past a stretching cylinder. InDefect Diffus. Forum 378, 28–38 (2017)

    Article  Google Scholar 

  10. Dogonchi, A.S.; Ganji, D.D.: Impact of Cattaneo-Christov heat flux on MHD nanofluid flow and heat transfer between parallel plates considering thermal radiation effect. J. Taiwan Inst. Chem. Eng. 1(80), 52–63 (2017)

    Article  Google Scholar 

  11. Khan, M.; Karim, I.; Rahman, M.; Arifuzzaman, S.M.; Biswas, P.: Williamson fluid flow behaviour of MHD convective-radiative Cattaneo-Christov heat flux type over a linearly stretched-surface with heat generation and thermal-diffusion. Front. Heat Mass Transf. (2017). https://doi.org/10.5098/hmt.9.15

    Article  Google Scholar 

  12. Hayat, T.; Nadeem, S.: Flow of 3D Eyring-Powell fluid by utilizing Cattaneo-Christov heat flux model and chemical processes over an exponentially stretching surface. Results Phys. 1(8), 397–403 (2018)

    Article  Google Scholar 

  13. Reddy, M.G.; Rani, M.S.; Kumar, K.G.; Prasannakumara, B.C.: Cattaneo-Christov heat flux and non-uniform heat-source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge. J. Braz. Soc. Mech. Sci. Eng. 40(2), 1–21 (2018)

    Article  Google Scholar 

  14. Mishra, S.R.; Khan, I.; Al-Mdallal, Q.M.; Asifa, T.: Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source. Case Stud. Therm. Eng. 1(11), 113–9 (2018)

    Article  Google Scholar 

  15. Khan, M.I.; Hayat, T.; Khan, M.I.; Alsaedi, A.: Activation energy impact in nonlinear radiative stagnation point flow of Cross nanofluid. Int. Commun. Heat Mass Transf. 1(91), 216–24 (2018)

    Article  Google Scholar 

  16. Khan, M.I.; Qayyum, S.; Hayat, T.; Alsaedi, A.: Stratified flow of Sutterby fluid with homogeneous-heterogeneous reactions and Cattaneo–Christov heat flux. Int. J. Numer. Methods Heat Fluid Flow 29, 2977–2992 (2019)

  17. Zubair, M.; Ijaz, M.; Abbas, T.; Riaz, A.: Analysis of modified Fourier law in flow of ferromagnetic Powell-Eyring fluid considering two equal magnetic dipoles. Can. J. Phys. 97(7), 772–6 (2019)

    Article  Google Scholar 

  18. Ibrahim, W.; Hindebu, B.: Magnetohydrodynamic (MHD) boundary layer flow of Eyring-Powell nanofluid past stretching cylinder with Cattaneo-Christov heat flux model. Nonlinear Eng. 8(1), 303–17 (2019)

    Article  Google Scholar 

  19. Haq, R.U.; Nadeem, S.; Khan, Z.H.; Akbar, N.S.: Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Phys. E Low-dimens. Syst. Nanostruct. 1(65), 17–23 (2015)

    Article  Google Scholar 

  20. Alwatban, A.M.; Khan, S.U.; Waqas, H.; Tlili, I.: Interaction of Wu’s slip features in bioconvection of Eyring-Powell nanoparticles with activation energy. Processes 7(11), 859 (2019)

    Article  Google Scholar 

  21. Waqas, H.; Khan, S.U.; Shehzad, S.A.; Imran, M.: Significance of the nonlinear radiative flow of micropolar nanoparticles over porous surface with a gyrotactic microorganism, activation energy, and Nield’s condition. Heat Transf. Asian Res. 48(7), 3230–56 (2019)

    Article  Google Scholar 

  22. Rana, B.M.; Arifuzzaman, S.M.; Reza-E-Rabbi, S.; Ahmed, S.F.; Khan, M.S.: Energy and magnetic flow analysis of Williamson micropolar nanofluid through stretching sheet. Int. J. Heat Technol. 37(2), 487–96 (2019)

    Article  Google Scholar 

  23. Jabeen, K.; Mushtaq, M.; Akram, R.M.: A comparative study of MHD flow analysis in a porous medium by using differential transformation method and variational iteration method. J. Contemp. Appl. Math. 9(2), 1–5 (2019)

    MATH  Google Scholar 

  24. Bilal, S.; Sohail, M.; Naz, R.; Malik, M.Y.; Alghamdi, M.: Upshot of ohmically dissipated Darcy-Forchheimer slip flow of magnetohydrodynamic Sutterby fluid over radiating linearly stretched surface in view of Cash and Carp method. Appl. Math. Mech. 40(6), 861–76 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Khan, N.S.; Shah, Q.; Bhaumik, A.; Kumam, P.; Thounthong, P.; Amiri, I.: Entropy generation in bioconvection nanofluid flow between two stretchable rotating disks. Sci. Rep. 10(1), 1–26 (2020)

    Google Scholar 

  26. Abbas, S.Z.; Khan, M.I.; Kadry, S.; Khan, W.A.; Israr-Ur-Rehman, M.; Waqas, M.: Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy. Comput. Methods Programs Biomed. 1(190), 105362 (2020)

    Article  Google Scholar 

  27. Bhatti, M.M.; Shahid, A.; Abbas, T.; Alamri, S.Z.; Ellahi, R.: Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate. Processes 8(3), 328 (2020)

    Article  Google Scholar 

  28. Abdelmalek, Z.; Al-Khaled, K.; Waqas, H.; Aldabesh, A.; Khan, S.U.; Musmar, S.E.; Tlili, I.: Bioconvection in Cross nano-materials with magnetic dipole impacted by activation energy, thermal radiation, and second order slip. Symmetry 12(6), 1019 (2020)

    Article  Google Scholar 

  29. Kanta Mondal, S.; Pal, D.: Gyrotactic mixed bioconvection flow of a nanofluid over a stretching wedge embedded in a porous media in the presence of binary chemical reaction and activation energy. Int. J. Ambient Energy 8, 1–1 (2020)

    Google Scholar 

  30. Ali, L.; Liu, X.; Ali, B.; Mujeed, S.; Abdal, S.; Khan, S.A.: Analysis of magnetic properties of nano-particles due to a magnetic dipole in micropolar fluid flow over a stretching sheet. Coatings 10(2), 170 (2020)

    Article  Google Scholar 

  31. Sohail, M.; Naz, R.: Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder. Phys. A Stat. Mech. Appl. 1(549), 124088 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Khan, M.I.; Alzahrani, F.; Hobiny, A.; Ali, Z.: Modeling of Cattaneo-Christov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium. J. Mater. Res. Technol. 9(3), 6172–7 (2020)

    Article  Google Scholar 

  33. Jabeen, K.; Mushtaq, M.; Akram Muntazir, R.M.: Analysis of MHD fluids around a linearly stretching sheet in porous media with thermophoresis, radiation, and chemical reaction. Math. Probl. Eng. 7, 2020 (2020)

    MathSciNet  Google Scholar 

  34. Jabeen, K.; Mushtaq, M.; Akram, R.M.: Analysis of the MHD boundary layer flow over a nonlinear stretching sheet in a porous medium using semianalytical approaches. Math. Probl. Eng. 20, 2020 (2020)

    Google Scholar 

  35. Mir, N.A.; Farooq, M.; Rizwan, M.; Ahmad, F.; Ahmad, S.; Ahmad, B.: Analysis of thermally stratified flow of Sutterby nanofluid with zero mass flux condition. J. Mater. Res. Technol. 9(2), 1631–9 (2020)

    Article  Google Scholar 

  36. John Christopher, A.; Magesh, N.; Punith Gowda, R.J.; Naveen Kumar, R.; Varun Kumar, R.S.: Hybrid nanofluid flow over a stretched cylinder with the impact of homogeneous-heterogeneous reactions and Cattaneo-Christov heat flux: series solution and numerical simulation. Heat Transf. 50(4), 3800–21 (2021)

    Article  Google Scholar 

  37. Reddy, M.G.; Vijayakumari, P.; Kumar, K.G.; Shehzad, S.A.: Zero-mass flux and Cattaneo-Christov heat flux through a Prandtl non-Newtonian nanofluid in Darcy-Forchheimer porous space. Heat Transf. 50(1), 220–33 (2021)

    Article  Google Scholar 

  38. Zhao-Wei, T.; Sami Ullah, K.; Hanumesh, V.; Rajashekhar, R.; Tian-Chuan, S.; Ijaz, K.M.; Kv, P.; Ronnason, C.; Ayman, A.A.: Nonlinear thermal radiation and activation energy significances in slip flow of bioconvection of Oldroyd-B nanofluid with Cattaneo-Christov theories. Case Stud. Therm. Eng. (2021). https://doi.org/10.1016/j.csite.2021.101069

    Article  Google Scholar 

  39. Muntazir, R.M.A.; Jabeen, K.; Mushtaq, M.: A numerical study of MHD Carreau nanofluid flow with gyrotactic microorganisms over a plate, wedge, and stagnation point. Math. Probl. Eng. 2021, 22 (2021)

    Article  Google Scholar 

  40. Muntazir, R.M.; Mushtaq, M.; Shahzadi, S.; Jabeen, K.: Influence of chemically reacting ferromagnetic Carreau nanofluid over a stretched sheet with magnetic dipole and viscous dissipation. Math. Probl. Eng. 19, 2021 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Jabeen, K.; Mushtaq, M.; Akram, R.M.: Suction and injection impacts on Casson nanofluid with gyrotactic microorganisms over a moving wedge. J. Fluids Eng. 144(1), 011204 (2021)

    Article  Google Scholar 

  42. Muntazir, R.M.; Mushtaq, M.; Shahzadi, S.; Jabeen, K.: MHD nanofluid flow around a permeable stretching sheet with thermal radiation and viscous dissipation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 27, 09544062211023094 (2021)

  43. Eswaramoorthi, S.; Alessa, N.; Sangeethavaanee, M.; Kayikci, S.; Namgyel, N.: Mixed convection and thermally radiative flow of MHD Williamson nanofluid with arrhenius activation energy and Cattaneo-Christov heat-mass flux. J. Math. 18, 2021 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Ali, B.; Hussain, S.; Nie, Y.; Ali, L.; Hassan, S.U.: Finite element simulation of bioconvection and Cattaneo-Christov effects on micropolar based nanofluid flow over a vertically stretching sheet. Chin. J. Phys. 1(68), 654–70 (2020)

    Article  MathSciNet  Google Scholar 

  45. Yahya, A.U.; Salamat, N.; Habib, D.; Ali, B.; Hussain, S.; Abdal, S.: Implication of Bio-convection and Cattaneo-Christov heat flux on Williamson Sutterby nanofluid transportation caused by a stretching surface with convective boundary. Chin. J. Phys. 1(73), 706–18 (2021)

    Article  MathSciNet  Google Scholar 

  46. Chu, Y.M.; Shankaralingappa, B.M.; Gireesha, B.J.; Alzahrani, F.; Khan, M.I.; Khan, S.U.: Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl. Math. Comput. 15(419), 126883 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Waqas, H.; Hussain, M.; Alqarni, M.S.; Eid, M.R.; Muhammad, T.: Numerical simulation for magnetic dipole in bioconvection flow of Jeffrey nanofluid with swimming motile microorganisms. Waves Random Complex Media 7, 1–8 (2021)

    Google Scholar 

  48. El Din, S.M.; Darvesh, A.; Ayub, A.; Sajid, T.; Jamshed, W.; Eid, M.R.; Hussain, S.M.; Sánchez-Chero, M.; Ancca, S.M.; Ramírez Cerna, J.M.; Dapozzo, C.L.: Quadratic multiple regression model and spectral relaxation approach for Carreau nanofluid inclined magnetized dipole along stagnation point geometry. Sci. Rep. 12(1), 17337 (2022)

    Article  Google Scholar 

  49. Jamshed, W.; Safdar, R.; Ibrahim, R.W.; Nisar, K.S.; Eid, M.R.; Alam, M.M.: Shape-factor and radiative flux impacts on unsteady graphene-copper hybrid nanofluid with entropy optimisation: Cattaneo-Christov heat flux theory. Pramana 96(3), 163 (2022)

    Article  Google Scholar 

  50. Shahzad, F.; Jamshed, W.; Sajid, T.; Shamshuddin, M.D.; Safdar, R.; Salawu, S.O.; Eid, M.R.; Hafeez, M.B.; Krawczuk, M.: Electromagnetic control and dynamics of generalized burgers’ nanoliquid flow containing motile microorganisms with Cattaneo-Christov relations: Galerkin finite element mechanism. Appl. Sci. 12(17), 8636 (2022)

    Article  Google Scholar 

  51. Eid, M.R.: 3-D flow of magnetic rotating hybridizing nanoliquid in parabolic trough solar collector: implementing Cattaneo-Christov heat flux theory and centripetal and coriolis forces. Mathematics 10(15), 2605 (2022)

    Article  Google Scholar 

  52. Kai, Y.; Ahmad, S.; Takana, H.; Ali, K.; Jamshed, W.; Eid, M.R.; Abd-Elmonem, A.; El Din, S.M.: Thermal case study and generated vortices by dipole magnetic field in hybridized nanofluid flowing: alternating direction implicit solution. Results Phys. 1(49), 106464 (2023)

    Article  Google Scholar 

  53. Nasir, N.A.; Sajid, T.; Jamshed, W.; Altamirano, G.C.; Eid, M.R.; ElSeabee, F.A.: Cubic chemical autocatalysis and oblique magneto dipole effectiveness on cross nanofluid flow via a symmetric stretchable wedge. Symmetry 15(6), 1145 (2023)

  54. Prakasha, D.G.; Sudharani, M.V.; Kumar, K.G.; Elsaid, E.M.; Eid, M.R.: Thermal amelioration of aluminium nano-alloys on swirling aqueous MHD viscous nanofluid flow via a deformable cylinder: applying magnetic dipole. J. Therm. Anal. Calorim. 15, 1 (2023)

    Google Scholar 

  55. Rehman, M.I.; Chen, H.; Hamid, A.; Jamshed, W.; Eid, M.R.; El Din, S.M.; Khalifa, H.A.; Abd-Elmonem, A.: Effect of Cattaneo-Christov heat flux case on Darcy-Forchheimer flowing of Sutterby nanofluid with chemical reactive and thermal radiative impacts. Case Stud. Therm. Eng. 1(42), 102737 (2023)

    Article  Google Scholar 

  56. Jabeen, K.: Bioconvective Carreau nanofluid flow with magnetic dipole, viscous, and ohmic dissipation effects subject to Arrhenius activation energy. Numer. Heat Transf. Part A Appl. 7, 1–26 (2023)

    Google Scholar 

  57. Jabeen, K.; Mushtaq, M.; Naeem, S.: Role of suction/injection with magnetic dipole and double diffusion on nonlinear radiative Eyring–Powell nanofluid. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. (2023). https://doi.org/10.1177/09544089231162715

  58. Jabeen, K.; Mushtaq, M.; Mushtaq, T.; Akram Muntazir, R.M.: A numerical study of boundary layer flow of Williamson nanofluid in the presence of viscous dissipation, bioconvection, and activation energy’’. Numer. Heat Transf. Part A Appl. (2023). https://doi.org/10.1080/10407782.2023.2187494

    Article  Google Scholar 

  59. Jabeen, K.; Mushtaq, M.; Fatima, N.: Cattaneo-Christov heat flux model for bio-convective radiative Eyring-Powell nanofluid with viscous-ohmic dissipation and magnetic dipole impacts. J. Nanofluids 2023, 1–5 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanwal Jabeen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.S., Mushtaq, M. & Jabeen, K. Mixed Convection and Double Diffusion Impacts on Williamson–Sutterby Nanofluid with Activation Energy, Cattaneo–Christov Heat Flux, and a Magnetic Dipole. Arab J Sci Eng (2023). https://doi.org/10.1007/s13369-023-08367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08367-7

Keywords

Navigation