Skip to main content

Advertisement

Log in

Inspection of modified Fourier’s and Fick’s laws in magnetized transport of Oldroyd-B nanofluid with swimming motile microorganisms: a theoretical model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In modern technology, the cooling mechanisms are important for energy storage devices that have been performed with both active and passive heat transfer enhancement techniques. Engineers and scientists have produced various strategies for improving heat transport within thermal process. Nanofluids are the developing consequence of the improvement in heat transfer which has been continuously analyzed. This article discusses the 2D flow of Oldroyd-B nanofluid including swimming gyrotactic motile microorganisms through stretched cylinder. Aspects of Arrhenius activation energy, Cattaneo–Christov heat and mass fluxes and heat source/sink are also considered. The significance of Brownian motion and thermophoresis diffusions is also described to analyze the nanoparticles. Oldroyd-B nanofluid is auspicious for depicting many forms of problems, because this fluid system has the potential to show the features of several rate-type liquids like fluids under the short-chain suspended tiny particles, fluid particles, cleaning products as well as blood in humans. Appropriate similarity variables are used to attain a non-dimensional appearance of problem, and then embedded coupled ODEs have been solved mathematically by using bvp4c solver in the computational software MATLAB. Significance of involved pertinent parameters on flow field like temperature profile, volumetric nanoparticle concentration and microorganism field is also analyzed through graphs. It has been found that the increment in Prandtl number reduces temperature. It is also interesting to observe that temperature field is enhanced for larger temperature ratio and thermophoresis parameters. The outcomes indicate that concentration of nanoparticles is decreasing functions of concentration relaxation parameter and Lewis number. Furthermore, the microorganism field is reduced for larger bioconvection Lewis number while upgraded for bioconvection Rayleigh number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: The data used to support the findings of this study are included within the article.]

References

  1. T. Anwar, P. Kumam, I. Khan, W. Watthayu, Heat transfer enhancement in unsteady MHD natural convective flow of CNTs Oldroyd-B nanofluid under ramped wall velocity and ramped wall temperature. Entropy 22(4), 401 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  2. T. Hayat, S.A. Khan, M.I. Khan, S. Momani, A. Alsaedi, Cattaneo-Christov (CC) heat flux model for nanomaterial stagnation point flow of Oldroyd-B fluid. Comput. Methods Programs Biomed. 187, 105247 (2020)

    Article  Google Scholar 

  3. X. Wang, Y. Jiang, Y. Qiao, H. Xu, H. Qi, Numerical study of electroosmotic slip flow of fractional Oldroyd-B fluids at high zeta potentials. Electrophoresis 41, 769–777 (2020)

    Article  Google Scholar 

  4. A. Hafeez, M. Khan, J. Ahmed, Thermal aspects of chemically reactive Oldroyd-B fluid flow over a rotating disk with Cattaneo–Christov heat flux theory. J. Therm. Anal. Calorim. 144, 793–803 (2020)

    Article  Google Scholar 

  5. A. Hafeez, M. Khan, J. Ahmed, Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Comput. Methods Programs Biomed. 27, 105342 (2020)

    Article  Google Scholar 

  6. S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 231/MD 66, 99–105 (1995)

  7. J. Buongiorno, Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  8. M. Ali, F. Sultan, W.A. Khan, M. Shahzad, H. Arif, Important features of expanding/contracting cylinder for cross magneto-nanofluid flow. Chaos Solitons Fractals 133, 109656 (2020)

    Article  MathSciNet  Google Scholar 

  9. L. Ali, X. Liu, B. Ali, Finite element analysis of variable viscosity impact on MHD flow and heat transfer of nanofluid using the Cattaneo–Christov model. Coatings 10(4), 395 (2020)

    Article  Google Scholar 

  10. S.K. Rawat, H. Upreti, M. Kumar, Comparative study of mixed convective MHD Cu-water nanofluid flow over a cone and wedge using modified Buongiorno’s model in presence of thermal radiation and chemical reaction via Cattaneo-Christov double diffusion model. J. Appl. Comput. Mech. 7, 1383–1402 (2021)

    Google Scholar 

  11. A.S. Dogonchi, M. Waqas, S.M. Seyyedi, M. Hashemi-Tilehnoee, D.D. Ganji, A modified Fourier approach for analysis of nanofluid heat generation within a semi-circular enclosure subjected to MFD viscosity. Int. Commun. Heat Mass Transf. 111, 104430 (2020)

    Article  Google Scholar 

  12. K. Muhammad, T. Hayat, A. Alsaedi, B. Ahmad, Melting heat transfer in squeezing flow of basefluid (water), nanofluid (CNTs+ water) and hybrid nanofluid (CNTs+ CuO+ water). J. Therm. Anal. Calorim. 143, 1157–1174 (2020)

    Article  Google Scholar 

  13. M. Turkyilmazoglu, On the transparent effects of Buongiorno nanofluid model on heat and mass transfer. Eur. Phys. J. Plus 136(4), 1–15 (2021)

    Article  Google Scholar 

  14. M. Turkyilmazoglu, Exact solutions concerning momentum and thermal fields induced by a long circular cylinder. Eur. Phys. J. Plus 136(5), 1–10 (2021)

    Article  Google Scholar 

  15. T. Muhammad, H. Waqas, S.A. Khan, R. Ellahi, S.M. Sait, Significance of nonlinear thermal radiation in 3D Eyring–Powell nanofluid flow with Arrhenius activation energy. J. Therm. Anal. Calorim. 143, 929–944 (2020)

    Article  Google Scholar 

  16. C. Cattaneo, Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 3, 83–101 (1948)

    MATH  Google Scholar 

  17. C.I. Christov, On frame indifferent formulation of the Maxwell–Cattaneo model of finite speed heat conduction. Mech. Res. Commun. 36, 481–486 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Tibullo, V. Zampoli, A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 38, 77–79 (2011)

    Article  MATH  Google Scholar 

  19. T. Hayat, T. Muhammad, A. Alsaedi, B. Ahmad, Three-dimensional flow of nanofluid with Cattaneo–Christov double diffusion. Results Phys. 6, 897–903 (2016)

    Article  ADS  Google Scholar 

  20. A. Tulu, W. Ibrahim, MHD slip flow of CNT-ethylene glycol nanofluid due to a stretchable rotating disk with Cattaneo–Christov heat flux model. Math. Probl. Eng. 2020, 1–13 (2020)

    Article  Google Scholar 

  21. Z. Shah, E.O. Alzahrani, A. Dawar, W. Alghamdi, M. Zaka Ullah, Entropy generation in MHD second-grade nanofluid thin film flow containing CNTs with Cattaneo–Christov heat flux model past an unsteady stretching sheet. Appl. Sci. 10(8), 2720 (2020)

    Article  Google Scholar 

  22. S.U. Khan, I. Tlili, H. Waqas, M. Imran, Effects of nonlinear thermal radiation and activation energy on modified second-grade nanofluid with Cattaneo–Christov expressions. J. Therm. Anal. Calorim. 143, 1175–1186 (2020)

    Article  Google Scholar 

  23. J.R. Platt, “Bioconvection patterns” in cultures of free-swimming organisms. Science 133(3466), 1766–1767 (1961)

    Article  ADS  Google Scholar 

  24. A. Shahid, H. Huang, M.M. Bhatti, L. Zhang, R. Ellahi, Numerical investigation on the swimming of gyrotactic microorganisms in nanofluids through porous medium over a stretched surface. Mathematics 8(3), 380 (2020)

    Article  Google Scholar 

  25. Y. Li, H. Waqas, M. Imran, U. Farooq, F. Mallawi, I. Tlili, A numerical exploration of modified second-grade nanofluid with motile microorganisms, thermal radiation, and Wu’s slip. Symmetry 12(3), 393 (2020)

    Article  Google Scholar 

  26. M. Aneja, S. Sharma, S. Kuharat, B.O. Anwar, Computation of electroconductive gyrotactic bioconvection under nonuniform magnetic field: simulation of smart bio-nanopolymer coatings for solar energy. Int. J. Mod. Phys. B 18, 2050028 (2020)

    Article  MathSciNet  Google Scholar 

  27. H. Waqas, S.U. Khan, S.A. Shehzad, M. Imran, I. Tlili, Activation energy and bioconvection aspects in generalized second-grade nanofluid over a Riga plate: a theoretical model. Appl. Nanosci. 20, 1–4 (2020)

    Google Scholar 

  28. H. Waqas, S.U. Khan, M. Hassan, M.M. Bhatti, M. Imran, Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. J. Mol. Liq. 291, 111231 (2019)

    Article  Google Scholar 

  29. A.A. Siddiqui, M. Turkyilmazoglu, Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int. Commun. Heat Mass Transf. 113, 104499 (2020)

    Article  Google Scholar 

  30. M. Turkyilmazoglu, MHD natural convection in saturated porous media with heat generation/absorption and thermal radiation: closed-form solutions. Arch. Mech. 71(1), 49–64 (2019)

    MathSciNet  MATH  Google Scholar 

  31. M. Turkyilmazoglu, Thermal radiation effects on the time-dependent MHD permeable flow having variable viscosity. Int. J. Therm. Sci. 50(1), 88–96 (2011)

    Article  MathSciNet  Google Scholar 

  32. M. Turkyilmazoglu, Nanoliquid film flow due to a moving substrate and heat transfer. Eur. Phys. J. Plus 135(10), 1–13 (2020)

    Article  Google Scholar 

  33. H. Waqas, S.U. Khan, M. Imran, M.M. Bhatti, Thermally developed Falkner–Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno’s nanofluid model. Phys. Scr. 94, 115304 (2019)

    Article  ADS  Google Scholar 

  34. H. Waqas, S.A. Shehzad, S.U. Khan, M. Imran, Novel numerical computations on flow of nanoparticles in porous rotating disk with multiple slip effects and microorganisms. J. Nanofluids 8, 1423–1432 (2019)

    Article  Google Scholar 

  35. M.I. Khan, F. Haq, S.A. Khan, T. Hayat, M.I. Khan, Development of thixotropic nanomaterial in fluid flow with gyrotactic microorganisms, activation energy, mixed convection. Comput. Methods Programs Biomed. 187, 105186 (2020)

    Article  Google Scholar 

  36. K. Naganthran, M.F. Basir, M.S. Kasihmuddin, S.E. Ahmed, F.B. Olumide, R. Nazar, Exploration of dilatant nanofluid effects conveying microorganism utilizing scaling group analysis: FDM Blottner. Phys. A Stat. Mech. Appl. 2, 124040 (2020)

    Article  MathSciNet  Google Scholar 

  37. T. Muhammad, S.Z. Alamri, H. Waqas, D. Habib, R. Ellahi, Bioconvection flow of magnetized Carreau nanofluid under the influence of slip over a wedge with motile microorganisms. J. Therm. Anal. Calorim. 143, 945–957 (2021)

    Article  Google Scholar 

  38. S. Abdelsalam, M.M. Bhatti, Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms. Appl. Math. Mech. 41, 711–724 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. S.U. Khan, H. Waqas, M.M. Bhatti, M. Imran, Bioconvection in the rheology of magnetized couple stress nanofluid featuring activation energy and Wu’s slip. J. Non-Equilib. Thermodyn. 45(1), 81–95 (2020)

    Article  ADS  Google Scholar 

  40. M.M. Bhatti, M.I. Marin, A. Zeeshan, R. Ellahi, Swimming of motile gyrotactic microorganisms and movement of nanoparticles in blood flow through anisotropically tapered arteries. Front. Phys. 8, 95 (2020)

    Article  Google Scholar 

  41. M. Irfan, M. Khan, W.A. Khan, M. Sajid, Thermal and solutal stratifications in flow of Oldroyd-B nanofluid with variable conductivity. Appl. Phys. A 124(10), 1–11 (2018)

    Article  Google Scholar 

  42. A. Hafeez, M. Khan, A. Ahmed, J. Ahmed, Rotational flow of Oldroyd-B nanofluid subject to Cattaneo–Christov double diffusion theory. Appl. Math. Mech. 41, 1083–1094 (2020)

    Article  MATH  Google Scholar 

  43. A.M. Megahed, Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chin. Phys. B 22(9), 094701 (2013)

    Article  Google Scholar 

  44. S.M. Atif, S. Hussain, M. Sagheer, Effect of viscous dissipation and Joule heating on MHD radiative tangent hyperbolic nanofluid with convective and slip conditions. J. Braz. Soc. Mech. Sci. Eng. 41(4), 1–17 (2019)

    Article  Google Scholar 

  45. M. Mustafa, Cattaneo–Christov heat flux model for rotating flow and heat transfer of upper-convected Maxwell fluid. Aip Adv. 5(4), 047109 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through research groups program under grant number R.G.P-2/76/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Waqas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waqas, H., Muhammad, T., Khan, S.A. et al. Inspection of modified Fourier’s and Fick’s laws in magnetized transport of Oldroyd-B nanofluid with swimming motile microorganisms: a theoretical model. Eur. Phys. J. Plus 136, 860 (2021). https://doi.org/10.1140/epjp/s13360-021-01843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01843-9

Navigation