Skip to main content
Log in

Cattaneo–Christov heat flux and non-uniform heat-source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Impact of Cattaneo–Christov heat flux on radiative Oldroyd-B two-phase flow across a cone/wedge is addressed. RKF-45 method with shooting technique is used to obtain solution of the problem. The obtained results are presented through graphs and tables. We examined the results under non-linear variation of thermal radiation. Our simulations established that influence of physical parameter highly effective for cone when compare to wedge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(A^{*}\) :

Heat-source parameter

\(B^{*}\) :

Heat-sink parameter

\(B_{0}\) :

Uniform magnetic field

\(Ec\) :

Eckert number

\(Gr\) :

Grashoff number

\(g\) :

Gravitational acceleration

\(K\) :

Stokes drag coefficient

\(K*\) :

Mean absorption coefficient

\(l\) :

Dust particle concentration parameter

\(M\) :

Magnetic parameter

\(m\) :

Mass of dust particle

\(N\) :

Number of dust particles

\(Pr\) :

Prandtl number

\(q'''\) :

Temperature-dependent on heat-source/sink parameters

\(R\) :

Radiation parameter

\(Re\) :

Reynolds number

\(T\) :

Fluid-phase temperature

\(T_{\text{p}}\) :

Dust-phase temperature

\(u\) :

Fluid-phase velocity components along \(x\)

\(u_{\text{p}}\) :

Dust-phase velocity components along \(x\)

\(v\) :

Fluid-phase velocity components along \(y\)

\(v_{\text{p}}\) :

Dust-phase velocity components along \(y\)

\(x\) :

Direction of both fluid and particle phases

\(y\) :

Direction of both fluid and particle phases

\(\beta\) :

Thermal relaxation parameter

\(\beta_{1}\) :

Deborah number with respect to relaxation of time

\(\beta_{2}\) :

Deborah number with respect to retardation of time

\(\beta_{\upsilon }\) :

Fluid–particle interaction parameter for velocity

\(\beta_{t}\) :

Fluid–particle interaction parameter for temperature

\(\gamma\) :

Specific heat ratio

\(\gamma_{1}\) :

Non-linear convection parameter

\(\lambda\) :

Mixed convection parameter

\(\lambda_{1}\) :

Relaxation of time

\(\lambda_{2}\) :

Retardation of time

\(\rho\) :

Densities of the fluid

\(\rho_{\text{p}}\) :

Densities of the particle phase

\(\nu\) :

Viscosity of the fluid

\(\rho\) :

Electrical conductivity

\(\delta\) :

Relaxation time of heat flux

\(\sigma^{*}\) :

Stefan–Boltzman coefficient

\(\tau_{\text{T}}\) :

Relaxation time for temperature

\(\tau_{\text{v}}\) :

Relaxation time for velocity

\('\) :

Differentiate with respect to \(\xi\)

\(p\) :

Dust phase

\(\infty\) :

Fluid property at ambient condition

References

  1. Saffman PG (1962) On the stability of laminar flow of a dusty gas. J Fluid Mech 13:120–128

    Article  MathSciNet  MATH  Google Scholar 

  2. Vajravelu K, Nayfeh J (1992) Hydromagnetic flow of a dusty fluid over a stretching sheet. Int J Nonlinear Mech 27:937–945

    Article  MATH  Google Scholar 

  3. Chamkha AJ (2000) The stokes problem for a dusty fluid in the presence of magnetic field, heat generation and wall suction effects. Int J Numer Methods Heat Fluid Flow 10(1):116–133

    Article  MathSciNet  MATH  Google Scholar 

  4. Palani G, Ganesan P (2007) Heat transfer effects on dusty gas flow past a semi-infinite inclined plate. ForschIngenieurwes 71:223–230

    Google Scholar 

  5. Makinde OD, Chinyoka T (2010) MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and navier slip condition. Comp Math Appl 60:660–669

    Article  MathSciNet  MATH  Google Scholar 

  6. Ramesh GK, Gireesha BJ, Bagewadi CS (2012) MHD flow of a dusty fluid near the stagnation point over a permeable stretching sheet with non-uniform source/sink. Int J Heat Mass Transfer 55:4900–4907

    Article  Google Scholar 

  7. Nandkeolyar R, Sibanda P (2013) On convective dusty flow past a vertical stretching sheet with internal heat absorption. J Appl Math. https://doi.org/10.1155/2013/806724

    MathSciNet  Google Scholar 

  8. Manjunatha PT, Gireesha BJ, Prasannakumara BC (2014) Thermal analysis of conducting dusty fluid flow in a porous medium over a stretching cylinder in the presence of non-uniform source/sink. Int J Mech Materials Eng 1:13. http://www.springer.com/40712/content/1/1/13

  9. Prasannakumara BC, Gireesha BJ, Manjunatha PT (2015) Melting phenomenon in MHD stagnation point flow of dusty fluid over a stretching sheet in the presence of thermal radiation and non-uniform heat source/sink. Int J Comp Methods Eng Sci Mech (Taylor and Francis). https://doi.org/10.1080/15502287.2015.1047056

    Google Scholar 

  10. Cattaneo C (1948) Sullaconduzionedelcalore. AttiSemin MatFis Univ Modena Reggio Emilia 3:83–101

    Google Scholar 

  11. Christov CI (2009) On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech Res Commun 36:481–486

    Article  MathSciNet  MATH  Google Scholar 

  12. Mustafa M (2015) Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper convected Maxwell fluid. AIP Adv 5:1–10

    Google Scholar 

  13. Sandeep N, Gnaneswara Reddy M (2017) Heat transfer of nonlinear radiative magnetohydrodynamic Cu-water nanofluid flow over two different geometries. J Mol Liquids 225:87–94

    Article  Google Scholar 

  14. Hayat T, Farooq M, Alsaedi A, Al-solamy F (2016) Impact of Cattaneo–Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Adv. https://doi.org/10.1063/1.4929523

    Google Scholar 

  15. Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A (2016) Cattaneo–Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq 220:642–648

    Article  Google Scholar 

  16. Rudraswamy NG, Ganesh Kumar K, Gireesha BJ, Gorla RSR (2016) Soret and Dufour effects in three-dimensional flow of Jeffery nanofluid in the presence of nonlinear thermal radiation. J Nanoeng Nanomanuf 6:1–10

    Article  Google Scholar 

  17. Gnaneswara Reddy M, Gorla RSR (2017) Micropolar fluid flow over a nonlinear stretching convectively heated vertical surface in the presence of Cattaneo–Christov heat flux and viscous dissipation. Front Heat Mass Transfer 8(20):1–9

    Google Scholar 

  18. Waqas M, Ijaz M, Khan T, Alsaedi Hayat A, Imran Khan M (2017) On Cattaneo–Christov double diffusion impact for temperature-dependent conductivity of Powell-Eyring liquid. Chin J Phys 55:729–737

    Article  Google Scholar 

  19. Ramzan M, Bilal M, Chung JD (2017) Soret and Dufour effects on three dimensional upper-convected Maxwell fluid with chemical reaction and non-linear radiative heat flux. Int J Chem Reactor Eng. https://doi.org/10.1515/ijcre-2016-0136

    Google Scholar 

  20. Ramzan M, Bilal M, Kanwal S, Chung JD (2017) Effects of variable thermal conductivity and non-linear thermal radiation past an Eyring Powell nanofluid flow with chemical reaction. Commun Theor Phys 67(6):723–731

    Article  Google Scholar 

  21. Ramzan M, Bilal M, Chung JD (2017) Radiative Williamson nanofluid flow over a convectively heated Riga plate with chemical reaction-A numerical approach. Chin J Phys 55(4):1663–1673

    Article  Google Scholar 

  22. Ramzan M, Bilal M, Chung JD (2017) Influence of homogeneous-heterogeneous reactions on MHD 3D Maxwell fluid flow with Cattaneo–Christov heat flux and convective boundary condition. J Mol Liq 230:415–422

    Article  Google Scholar 

  23. Ramzan M, Bilal M, Chung JD (2017) Radiative flow of Powell-Eyring magneto-Nanofluid over a stretching cylinder with chemical reaction and double stratification near a stagnation point. PLoS ONE 12(1):e0170790

    Article  Google Scholar 

  24. Ramzan M, Bilal M, Chung JD, Mann AB (2017) On MHD radiative Jeffery nanofluid flow with convective heat and mass boundary conditions. Neural Comput Appl. https://doi.org/10.1007/s00521-017-2852-8

    Google Scholar 

  25. Ramzan M, Bilal M, Farooq U, Chung JD (2017) Mixed convective radiative flow of second grade nanofluid with convective boundary conditions: an optimal solution. Res Phys 6:796–804

    Google Scholar 

  26. Ramzan M, Bilal M, Chung JD (2016) Effects of MHD homogeneous-heterogeneous reactions on third grade fluid flow with Cattaneo–Christov heat flux. J Mol Liq 223:1284–1290

    Article  Google Scholar 

  27. Ganesh Kumar K, Rudraswamy NG, Gireesha BJ, Krishnamurthy MR (2017) Influence of nonlinear thermal radiation and viscous dissipation on three-dimensional flow of Jeffrey nano fluid over a stretching sheet in the presence of Joule heating. Nonlinear Eng. https://doi.org/10.1515/nleng-2017-0014

    Google Scholar 

  28. Maxwell JC (1867) The dynamical theory of gases. Philos Trans R Soc Lond 157:49–88

    Article  Google Scholar 

  29. Burgers JM (1939) Mechanical considerations-model systems-phenomenological theories of relaxation and viscosity, first report on viscosity and plasticity. Nordemann, New York, pp 5–72

    Google Scholar 

  30. Oldroyd JG (1950) The formulation of rheological equations of state. Proc R Soc Lond Ser A 200(1063):523–541

    Article  MathSciNet  MATH  Google Scholar 

  31. Rajagopal KR, Bhatnagar RK (1995) Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mech 113:233–239

    Article  MathSciNet  MATH  Google Scholar 

  32. Fetecau C, Sharat C, Prasad SC, Rajagopal KR (2007) A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid. Appl Math Model 31:647–654

    Article  MATH  Google Scholar 

  33. Shehzad SA, Alsaedi A, Hayat T, Alhuthali MS (2013) Three-dimensional flow of an Oldroyd-B fluid with variable thermal conductivity and heat generation/absorption. PLoS ONE 8(11):e78240. https://doi.org/10.1371/journal.pone.0078240

    Article  Google Scholar 

  34. Ramzan M, Farooq M, Alhothuali MS, Malaikah HM, Cui W, Hayat T (2015) Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. Int J Numer Meth Heat Fluid Flow 25(1):68–85

    Article  MathSciNet  MATH  Google Scholar 

  35. Hayat T, Imtiaz M, Alsaedi A, Almezal S (2016) On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous–heterogeneous reactions. J Magn Magn Mater 401:296–303

    Article  Google Scholar 

  36. Hashmi MS, Khan N, Mahmood T, Shehzad SA (2017) Effect of magnetic field on mixed convection flow of Oldroyd-B nanofluid induced by two infinite isothermal stretching disks. Int J Therm Sci 111:463–474

    Article  Google Scholar 

  37. Hayat T, Zubair M, Waqas M, Alsaedi A, Ayub M (2017) on doubly stratified chemically reactive flow of Powell-Eyring liquid subject to non-Fourier heat flux theory. Res Phys 7:99–106

    Google Scholar 

  38. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) On 2D stratified flow of an Oldroyd-B fluid with chemical reaction: an application of non-Fourier heat flux theory. J Mol Liq 223:566–571

    Article  Google Scholar 

  39. Hayat T, Zubair M, Waqas M, Alsaedi A, Ayub M (2017) Importance of chemical reactions in flow of Walter-B liquid subject to non-Fourier flux modeling. J Mol Liq 238:229–235

    Article  Google Scholar 

  40. Waqas M, Farooq M, Ijaz Khan M, Alsaedi A, Hayat T, Yasmeen T (2016) Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int J Heat Mass Transf 102:766–772

    Article  Google Scholar 

  41. Hayat T, Waqas M, Ijaz Khan M, Alsaedi A (2017) Impacts of constructive and destructive chemical reactions in magnetohydrodynamic (MHD) flow of Jeffrey liquid due to nonlinear radially stretched surface. J Mol Liq 225:302–310

    Article  Google Scholar 

  42. Waqas M, Ijaz Khan M, Hayat T, Alsaedi A (2017) Numerical simulation for magneto Carreau nanofluid model with thermal radiation: a revised model. Comput Methods Appl Mech Eng 324:640–653

    Article  MathSciNet  Google Scholar 

  43. Hayat T, Bashir G, Waqas M, Alsaedi A (2016) MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. J Mol Liq 223:836–844

    Article  Google Scholar 

  44. Sandeep N, Reddy MG (2017) MHD Oldroyd-B fluid flow across a melting surface with cross diffusion and double stratification. Eur Phys J Plus 132:147. https://doi.org/10.1140/epjp/i2017-11417-9

    Article  Google Scholar 

  45. Ramana Reddy V, Sandeep N, Sugunamma V (2015) MHD flow of a nanofluid embedded with dust particles due to cone with volume fraction of dust and nano particles. Proced Eng 127:1026–1033

    Article  Google Scholar 

  46. Sadeghy K, Hajibeygi H, Taghavi SM (2006) Stagnation-point flow of upper convected Maxwell fluids. Int J Non-Linear Mech 41:1242–1247

    Article  Google Scholar 

  47. Abel S, Tawade JV, Shinde JN (2012) The effects of MHD flow and heat transfer for theUCM fluid over a stretching surface in presence of thermal radiation. Adv Math Phys 2012:702681

    Article  MATH  Google Scholar 

  48. Gireesha BJ, Venkatesh P, Shashikumar NS, Prasannakumara BC (2017) Boundary layer flow of dusty fluid over a permeable radiating stretching surface embedded in a thermally stratified porous medium in the presence of uniform heat source. Nonlinear Eng 6(1):31–41

    Article  Google Scholar 

  49. Abel MS, Mahesha N (2008) Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. Appl Math Model 32:1965–1983

    Article  MathSciNet  MATH  Google Scholar 

  50. Sandeep N, Sulochana C (2016) MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles. Ain Shams Eng J 7:709–716

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gnaneswara Reddy.

Additional information

Technical Editor: Cezar Negrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, M.G., Rani, M.V.V.N.L.S., Kumar, K.G. et al. Cattaneo–Christov heat flux and non-uniform heat-source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge. J Braz. Soc. Mech. Sci. Eng. 40, 95 (2018). https://doi.org/10.1007/s40430-018-1033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1033-8

Keywords

Navigation