Skip to main content
Log in

Effect of Nano-calcium carbonate on the Geotechnical and Microstructural Characteristics of Highly Plastic Paddy Clay

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Construction on temporary wetlands like paddy fields is a necessity due to rapid urbanisation. A sustainable ground improvement practice mitigating negative impacts on the geological genesis of fields is crucial. The novel approach of soil treatment using nano-stabilisers could be a feasible solution. The present study investigated the effect of nano-CaCO3 on the plasticity, compressibility, strength, and shrinkage characteristics of paddy clay. The efficiency of nanomaterial in altering the geotechnical properties was studied by adding 0.5%, 1%, 1.5%, and 2% of nano-CaCO3 per unit weight of dry soil. The unconfined compressive strength of paddy clay samples treated with an optimal amount of 1.5% nano-CaCO3 increased 3.5-times compared to untreated samples after 28 days of curing. There was 20% decrease in the plasticity index value and 46% decrease in the liquid limit of the specimen after treatment. The shrinkage limit of highly plastic clay was found to have increased from 18 to 28% with the addition of optimum nano-content. The compression index value dropped from 0.33 to 0.26, and the coefficient of permeability decreased by nearly two orders of magnitude after nano-treatment. The microstructure of treated soil samples was assessed by X-ray powder diffraction analysis (XRD), Scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) surface area analysis. The laboratory findings and microstructural studies have shown that nano-CaCO3 treatment is a viable method to improve the physical and engineering behaviour of paddy clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included within the article.

References

  1. Jones, C.W.: Stabilization of expansive clay with hydrated lime and with portland cement. Highw. Res. Bull. 193, Highw. Res. Board, Natl. Res. Counc. 2:40–47 (1958)

  2. Petry, T.M.; Little, D.N.: Review of stabilization of clays and expansive soils in pavements and lightly loaded structures - history, practice, and future. Perspect. Civ. Eng. Commem. 150th Anniv. Am. Soc. Civ. Eng. 14(2), 307–320 (2003). https://doi.org/10.1061/(asce)0899-1561(2002)14:6(447)

    Article  Google Scholar 

  3. Kolias, S.; Kasselouri-Rigopoulou, V.; Karahalios, A.: Stabilisation of clayey soils with high calcium fly ash and cement. Cem. Concr. Compos. 27(2), 301–313 (2005). https://doi.org/10.1016/j.cemconcomp.2004.02.019

    Article  Google Scholar 

  4. Firoozi, A.A.; GuneyOlgun, C.; Firoozi, A.A.; Baghini, M.S.: Fundamentals of soil stabilization. Int. J. Geo Eng. (2017). https://doi.org/10.1186/s40703-017-0064-9

    Article  Google Scholar 

  5. Dhar, S.; Hussain, M.: The strength and microstructural behavior of lime stabilized subgrade soil in road construction. Int. J. Geotech. Eng. 15(4), 471–483 (2021). https://doi.org/10.1080/19386362.2019.1598623

    Article  Google Scholar 

  6. Gomes Correia, A.; Winter, M.G.; Puppala, A.J.: A review of sustainable approaches in transport infrastructure geotechnics. Transp. Geotech. 7, 21–28 (2016). https://doi.org/10.1016/j.trgeo.2016.03.003

    Article  Google Scholar 

  7. UNEP, Emissions gap report 21. (2021)

  8. Petry, T.M.; Armstrong, J.C.: Stabilization of expansive clay soils. Transp. Res. Rec. 1219, 103–112 (1989)

    Google Scholar 

  9. Ambily, A.P.; Gandhi, S.R.: Behavior of stone columns based on experimental and FEM analysis. J. Geotech. Geoenviron. Eng. 133(4), 405–415 (2007). https://doi.org/10.1061/(asce)1090-0241(2007)133:4(405)

    Article  Google Scholar 

  10. Chen, J.-J.; Zhang, L.; Zhang, J.-F.; Zhu, Y.-F.; Wang, J.-H.: Field tests, modification, and application of deep soil mixing method in soft clay. J. Geotech. Geoenviron. Eng. 139(1), 24–34 (2013). https://doi.org/10.1061/(asce)gt.1943-5606.0000746

    Article  Google Scholar 

  11. Colorado, H.A.; Nino, J.C.; Restrepo, O.: Applications and opportunities of nanomaterials in construction and infrastructure. Miner. Met. Mater. Ser. Part F8, 437–452 (2018). https://doi.org/10.1007/978-3-319-72484-3_46

    Article  Google Scholar 

  12. Kamali, S.; Sanajou, S.; Tazehzadeh, M.N.: Nanomaterials in construction and their potential impacts on human health and the environment. Environ. Eng. Manag. J. 18(11), 2305–2318 (2019). https://doi.org/10.30638/eemj.2019.220

    Article  Google Scholar 

  13. Choobbasti, A.J.; Vafaei, A.; Soleimani Kutanaei, S.: Static and cyclic triaxial behavior of cemented sand with nanosilica. J. Mater. Civ. Eng. 30(10), 04018269 (2018). https://doi.org/10.1061/(asce)mt.1943-5533.0002464

    Article  Google Scholar 

  14. Lv, Q.; Chang, C.; Zhao, B.; Ma, B.: Loess Soil Stabilization by Means of SiO2 Nanoparticles. Soil Mech. Found. Eng. 54(6), 409–413 (2018). https://doi.org/10.1007/s11204-018-9488-2

    Article  Google Scholar 

  15. Ghorbani, A., et al.: Effect of selected nanospheres on the mechanical strength of lime-stabilized high-plasticity clay soils. Adv. Civ. Eng. (2019). https://doi.org/10.1155/2019/4257530

    Article  Google Scholar 

  16. Selvakumar, S.; Kulanthaivel, P.; Soundara, B.: Influence of nano-silica and sodium silicate on the strength characteristics of clay soil. Nanotechnol. Environ. Eng. 6(3), 1–10 (2021). https://doi.org/10.1007/s41204-021-00142-z

    Article  Google Scholar 

  17. Valizadeh, M.; Janalizadeh Choobbasti, A.: Evaluation of nano-graphene effect on mechanical behavior of clayey sand with microstructural and self-healing approach. J. Adhes. Sci. Technol. 34(3), 299–318 (2020). https://doi.org/10.1080/01694243.2019.1676598

    Article  Google Scholar 

  18. Naseri, F.; Irani, M.; Dehkhodarajabi, M.: Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil. Arch. Civ. Mech. Eng. 16(4), 695–701 (2016). https://doi.org/10.1016/j.acme.2016.04.008

    Article  Google Scholar 

  19. Mir, B.A.; HariprasadReddy, S.: Enhancement in shear strength characteristics of soft soil by using nanomaterials. Lect. Notes Civ. Eng. 90, 421–435 (2021). https://doi.org/10.1007/978-3-030-51354-2_39

    Article  Google Scholar 

  20. Wang, W.; Li, J.; Hu, J.: Triaxial mechanical properties and micromechanism of calcareous sand modified by nanoclay and cement. Geofluids 2021, 1–9 (2021). https://doi.org/10.1155/2021/6639602

    Article  Google Scholar 

  21. Ali Zomorodian, S.M.; Shabnam, M.; Armina, S.; O’Kelly, B.C.: Strength enhancement of clean and kerosene-contaminated sandy lean clay using nanoclay and nanosilica as additives. Appl. Clay Sci. 140, 140–147 (2017). https://doi.org/10.1016/j.clay.2017.02.004

    Article  Google Scholar 

  22. Meng, T.; Qiang, Y.; Hu, A.; Xu, C.; Lin, L.: Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment. Constr. Build. Mater. 151, 775–781 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.016

    Article  Google Scholar 

  23. Chen, Q.; Yan, G.; Zhuang, X.; Pain, A.: “Dynamic characteristics and microstructural study of nano calcium carbonate modified cemented soil under different salt water solutions. Transp. Geotech. 32, 100700 (2022). https://doi.org/10.1016/j.trgeo.2021.100700

    Article  Google Scholar 

  24. Goyal, R.K.: Nanomaterials and Nanocomposites: Synthesis, Properties, Characterization Techniques, and Applications. (2017). https://doi.org/10.1201/9781315153285.

  25. Fukue, M.; Nakamura, T.; Kato, Y.: Cementation of soils due to calcium carbonate. Soils Found. 39(6), 55–64 (1999). https://doi.org/10.3208/sandf.39.6_55

    Article  Google Scholar 

  26. Canakci, H.; Sidik, W.; Halil Kilic, I.: Effect of bacterial calcium carbonate precipitation on compressibility and shear strength of organic soil. Soils Found. 55(5), 1211–1221 (2015). https://doi.org/10.1016/j.sandf.2015.09.020

    Article  Google Scholar 

  27. Oliveira, P.J.V.; Freitas, L.D.; Carmona, J.P.S.F.: Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement. J. Mater. Civ. Eng. 29(4), 04016263 (2017). https://doi.org/10.1061/(asce)mt.1943-5533.0001804

    Article  Google Scholar 

  28. Andreola, F.; Castellini, E.; Manfredini, T.; Romagnoli, M.: The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin. J. Eur. Ceram. Soc. 24(7), 2113–2124 (2004). https://doi.org/10.1016/S0955-2219(03)00366-2

    Article  Google Scholar 

  29. Arao, Y.; Tanks, J.; Aida, K.; Kubouchi, M.: Mechanochemical reaction using weak acid salts enables dispersion and exfoliation of nanomaterials in polar solvents. J. Mater. Sci. 54(6), 4546–4558 (2019). https://doi.org/10.1007/s10853-018-3156-9

    Article  Google Scholar 

  30. Kawashima, S.; Seo, J.W.T.; Corr, D.; Hersam, M.C.; Shah, S.P.: Dispersion of CaCO3 nanoparticles by sonication and surfactant treatment for application in fly ash-cement systems. Mater. Struct. Constr. 47(6), 1011–1023 (2014). https://doi.org/10.1617/s11527-013-0110-9

    Article  Google Scholar 

  31. Choobbasti, A.J.; Samakoosh, M.A.; Kutanaei, S.S.: Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Constr. Build. Mater. 211, 1094–1104 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.306

    Article  Google Scholar 

  32. Yong, L.L.; Namal Jayasan Kaperera, S.; Syamsir, A.; Emmanuel, E.; Chandra Paul, S.; Anggraini, V.: Stabilization of a residual soil using calcium and magnesium hydroxide nanoparticles: a quick precipitation method. Appl. Sci. (2019). https://doi.org/10.3390/app9204325

    Article  Google Scholar 

  33. Luo, H.L.; Hsiao, D.H.; Lin, D.F.; Lin, C.K.: Cohesive soil stabilized using sewage sludge ash/cement and nano aluminum oxide. Int. J. Transp. Sci. Technol. 1(1), 83–99 (2012). https://doi.org/10.1260/2046-0430.1.1.83

    Article  Google Scholar 

  34. Choobbasti, A.J.; Vafaei, A.; Kutanaei, S.S.: Mechanical properties of sandy soil improved with cement and nanosilica. Open Eng. 5(1), 111–116 (2015). https://doi.org/10.1515/eng-2015-0011

    Article  Google Scholar 

  35. Hong, Z.S.; Yin, J.; Cui, Y.J.: Compression behaviour of reconstituted soils at high initial water contents. Geotechnique 60(9), 691–700 (2010). https://doi.org/10.1680/geot.09.P.059

    Article  Google Scholar 

  36. Suganya, K.; Sivapullaiah, P.V.: Compressibility of remoulded and cement-treated Kuttanad soil. Soils Found. 60(3), 697–704 (2020). https://doi.org/10.1016/j.sandf.2019.07.006

    Article  Google Scholar 

  37. Moghal, A.A.B.; Sivapullaiah, P.V.: Effect of pozzolanic reactivity on compressibility characteristics of stabilised low lime fly ashes. Geotech. Geol. Eng. 29(5), 665–673 (2011). https://doi.org/10.1007/s10706-011-9408-y

    Article  Google Scholar 

  38. Molenaar, N.; Venmans, A.A.M.: Calcium carbonate cementation of sand: a method for producing artificially cemented samples for geotechnical testing and a comparison with natural cementation processes. Eng. Geol. 35(1–2), 103–122 (1993). https://doi.org/10.1016/0013-7952(93)90073-L

    Article  Google Scholar 

  39. Chang, T.P.; Shih, J.Y.; Yang, K.M.; Hsiao, T.C.: Material properties of portland cement paste with nano-montmorillonite. J. Mater. Sci. 42(17), 7478–7487 (2007). https://doi.org/10.1007/s10853-006-1462-0

    Article  Google Scholar 

  40. Nejad, F.M.; Tolouei, M.; Nazari, H.; Naderan, A.: Effects of calcium carbonate nanoparticles and fly ash on mechanical and permeability properties of concrete. Adv. Civ. Eng. Mater. 7(1), 651–668 (2018). https://doi.org/10.1520/ACEM20180066

    Article  Google Scholar 

  41. Choudalakis, G.; Gotsis, A.D.: Permeability of polymer/clay nanocomposites: a review. Eur. Polym. J. 45(4), 967–984 (2009). https://doi.org/10.1016/j.eurpolymj.2009.01.027

    Article  Google Scholar 

  42. Fattahi Masrour, F.; Naghdipour Mirsadeghi, M.; Mola Abasi, H.; Jamshidi Chenari, R.: Effect of nanosilica on the macro- and microbehavior of dispersive clays. J. Mater. Civ. Eng. 33(12), 04021349 (2021). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003975

    Article  Google Scholar 

  43. Liu, Y., et al.: Experimental investigation of the geotechnical properties and microstructure of lime-stabilized saline soils under freeze-thaw cycling. Cold Reg. Sci. Technol. 161, 32–42 (2019). https://doi.org/10.1016/j.coldregions.2019.03.003

    Article  Google Scholar 

  44. Behnood, A.: Soil and clay stabilization with calcium- and non-calcium-based additives: a state-of-the-art review of challenges, approaches and techniques. Transp. Geotech. 17, 14–32 (2018). https://doi.org/10.1016/j.trgeo.2018.08.002

    Article  Google Scholar 

  45. Grangeon, S.; Claret, F.; Roosz, C.; Sato, T.; Gaboreau, S.; Linard, Y.: Structure of nanocrystalline calcium silicate hydrates: insights from X-ray diffraction, synchrotron X-ray absorption and nuclear magnetic resonance. J. Appl. Crystallogr. 49, 771–783 (2016). https://doi.org/10.1107/S1600576716003885

    Article  Google Scholar 

  46. Soleimani Kutanaei, S.; Janalizadeh Choobbasti, A.: Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand. J. Mater. Civ. Eng. 29(3), 04016230 (2017). https://doi.org/10.1061/(asce)mt.1943-5533.0001761

    Article  Google Scholar 

  47. Joop, H.; Sefcik, J.: The handbook of continuous crystallization. R. Soc. Chem. (2020). https://doi.org/10.1039/9781788013581

    Article  Google Scholar 

  48. Dash, S.K.; Hussain, M.: Influence of lime on shrinkage behavior of soils. J. Mater. Civ. Eng. 27(12), 04015041 (2015). https://doi.org/10.1061/(asce)mt.1943-5533.0001301

    Article  Google Scholar 

  49. Lu, N.; Dong, Y.: Correlation between soil-shrinkage curve and water-retention characteristics. J. Geotech. Geoenviron. Eng. 143(9), 1–11 (2017). https://doi.org/10.1061/(asce)gt.1943-5606.0001741

    Article  Google Scholar 

  50. Grangeon, S.; Claret, F.; Linard, Y.; Chiaberge, C.: X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 69(5), 465–473 (2013). https://doi.org/10.1107/S2052519213021155

    Article  Google Scholar 

  51. Stuart, B.H.: Infrared Spectrosc. Fundam. Appl. (2005). https://doi.org/10.1002/0470011149

  52. Smitha, S.; Rangaswamy, K.; Keerthi, D.S.: Triaxial test behaviour of silty sands treated with agar biopolymer. Int. J. Geotech. Eng. 15(4), 484–495 (2021). https://doi.org/10.1080/19386362.2019.1679441

    Article  Google Scholar 

  53. Rathod, V.; Anupama, A.V.; Kumar, R.V.; Jali, V.M.; Sahoo, B.: Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites. Vib. Spectrosc. 92, 267–272 (2017). https://doi.org/10.1016/j.vibspec.2017.08.008

    Article  Google Scholar 

  54. Smitha, S.; Rangaswamy, K.: Dynamic properties of biopolymer-treated loose silty sand evaluated by cyclic triaxial test. J. Test. Eval. (2022). https://doi.org/10.1520/JTE20210141

    Article  Google Scholar 

  55. Hatch, C.D.; Wiese, J.S.; Crane, C.C.; Harris, K.J.; Kloss, H.G.; Baltrusaitis, J.: Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models. Langmuir 28(3), 1790–1803 (2012). https://doi.org/10.1021/la2042873

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or private sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapna Thomas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, S., Chandrakaran, S. & Sankar, N. Effect of Nano-calcium carbonate on the Geotechnical and Microstructural Characteristics of Highly Plastic Paddy Clay. Arab J Sci Eng 48, 12977–12989 (2023). https://doi.org/10.1007/s13369-023-07679-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07679-y

Keywords

Navigation