Skip to main content

Advertisement

Log in

An Experimental Investigation for Multi-Response Optimization of Friction Stir Process Parameters During Fabrication of AA6061/B4Cp Composites

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, friction stir processing (FSP) has been employed to fabricate metal matrix composites by incorporating B4C reinforcement particles into the aluminum AA6061 matrix. Taguchi experimental design, consisting of three factors and three levels, is used for minimizing the number of experiments. The factors considered are tool rotational speed, traverse feed and tool tilt angle. Desirability function analysis was employed to optimize the FSP parameters for simultaneous improvement of tensile strength and microhardness of the composites. The optimal parameters were found, and it was confirmed by experimental results. The composites fabricated using optimal process parameters exhibit a higher tensile strength (174 MPa) and microhardness (183 Hv). The tensile strength and microhardness values observed have been correlated with microstructural studies. Scanning electron micrograph revealed defect-free fabricated composites and uniform distribution of reinforcement particles in the stir zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CNT:

Carbon nanotube

DFA:

Desirability function analysis

d i :

Individual desirability for responses

d G :

Composite desirability

EDM:

Electrical discharge machine

FSP:

Friction stir process

FSW:

Friction stir welding

MMC:

Metal matrix composite

SEM:

Scanning electron microscope

UTS:

Ultimate tensile strength

VHN:

Vickers hardness number

References

  1. Jung J., Kang S.: Advances in manufacturing boron carbide–aluminum composites. J. Am. Ceram. Soc. 87, 47–54 (2004)

    Article  Google Scholar 

  2. Kennedy A.R.: The microstructure and mechanical properties of Al–Si–B4C metal matrix composites. J. Mater. Sci. 37, 317–323 (2002)

    Article  Google Scholar 

  3. Wang W., Shi Q., Liu P., Li H., Li T.: A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. J. Mater. Process. Technol. 209, 2099–2103 (2009)

    Article  Google Scholar 

  4. Salehi M., Farnoush H., Mohandesi J.A.: Fabrication and characterization of functionally graded Al–SiC nanocomposite by using a novel multistep friction stir processing. Mater. Des. 63, 419–426 (2014)

    Article  Google Scholar 

  5. Puviyarasan M., Senthil Kumar V.S.: Microstructural evolution and mechanical behaviour of AA6063/SiCp bulk composites fabricated using friction stir processing. Aust. J. Mech. Eng. 10(2), 111–118 (2012)

    Article  Google Scholar 

  6. Miranda, R.M.; Gandra, J.; Vilaca. P.: Surface modification by friction based processes. Mod. Surf. Eng. Treat. (2013). doi:10.5772/55986

  7. Kalaiselvan K., Murugan N.: Role of friction stir welding parameters on tensile strength of AA6061–B4C composite joints. Trans. Nonferr. Metals Soc. 23, 616–624 (2013)

    Article  Google Scholar 

  8. Sun K., Shi Q.Y., Sun Y.J., Chen G.Q.: Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing. Mater. Sci. Eng. A 547, 32–37 (2012)

    Article  Google Scholar 

  9. Devaraju A., Kumar A., Kumaraswamy A., Kotiveerachari B.: Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing. Mater. Des. 51, 331–341 (2013)

    Article  Google Scholar 

  10. Balasubramanian. B.: Friction stir welding: an enviornmentally cleaner welding processes. The Indian Institute of Welding Placid Rodriguez Memorial Lecture-2010. http://www.iiwindia.com/pdf/Placid%20Rodriguez%20Memoial%20Lecture-2010-%20Dr%20V%20Balasubramanian-%2028-12-2010.pdf (2010). Accessed 26 Nov 2014

  11. Khayyamin D., Mostafapour A., Keshmiri R.: The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Mater. Sci. Eng. A 559, 217–221 (2013)

    Article  Google Scholar 

  12. Mehdi Z., Besharati Givi M.K., Salami P.: Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Mater. Des. 39, 358–365 (2012)

    Article  Google Scholar 

  13. Akramifard H.R., Shamanian M., Sabbaghian M., Esmailzadeh M.: Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 54, 838–844 (2014)

    Article  Google Scholar 

  14. Hosseini S.A., Ranjbar K., Dehmolaei R., Amirani A.R.: Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing. J. Alloys Compd. 622, 725–733 (2015)

    Article  Google Scholar 

  15. Ni D.R., Wang J.J., Zhou Z.N., Ma Z.Y.: Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J. Alloys Compd. 586, 368–374 (2014)

    Article  Google Scholar 

  16. Prakash. T.; Sivasankaran. S.; Sasikumar. P.: Mechanical and tribological behaviour of friction-stir-processed Al 6061 aluminium sheet metal reinforced with Al2O3/0.5Gr hybrid surface nanocomposite. Arab. J. Sci. Eng. (2014). doi:10.1007/s13369-014-1518-4

  17. Puviyarasan M., Senthil Kumar V.S.: Optimization of friction stir process parameters in fabricating AA6061/SiCp composites. Procedia Eng. 38, 1094–1103 (2012)

    Article  Google Scholar 

  18. Asadi P., Besharati Givi M.K., Abrinia K., Taherishargh M., Salekrostam R.: Effects of SiC particle size and process parameters on the microstructure and hardness of Az91/SiC composite layer fabricated by FSP. J. Mater. Eng. Perform. 20, 1554–1562 (2011)

    Article  Google Scholar 

  19. Dolatkhah A., Golbabaei P., Besharati Give M.K., Molaiekiya F.: Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 37, 458–464 (2012)

    Article  Google Scholar 

  20. Thakur A.G., Nandedkar V.M.: Optimization of the resistance spot welding process of galvanized steel sheet using the Taguchi method. Arab. J. Sci. Eng. 39, 1171–1176 (2014)

    Article  Google Scholar 

  21. Garg Sanjeev K., Manna A., Jani A.: An investigation on machinability of Al/10 % ZrO2(P)-metal matrix composite by WEDM and parametric optimization using desirability function approach. Arab. J. Sci. Eng. 39, 3251–3270 (2014)

    Article  Google Scholar 

  22. Jenarthanan M.P., Jeyapaul R.: Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using taguchi method. Int. J. Eng. Sci. Technol. 5, 23–36 (2013)

    Google Scholar 

  23. Karthikeyan L., Senthil Kumar V.S., Padmanabhan K.A.: On the role of process variables in the friction stir cast aluminum A319 alloy. Mater. Des. 31(2), 761–771 (2010)

    Article  Google Scholar 

  24. Olga V.F.: Microstructural issues in a friction stir welded aluminium alloys. Scr. Mater. 38(5), 703–708 (1998)

    Article  Google Scholar 

  25. Aruri D., Adepu K., Adepu K., Bazavada K.: Wear and mechanical properties of 6061-T6 aluminum alloy surface composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing. J. Mater. Res. Technol. 2(4), 362–369 (2013)

    Article  Google Scholar 

  26. Pinar A.M.: Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arab. J. Sci. Eng. 38, 705–714 (2013)

    Article  Google Scholar 

  27. Maxwell Rejil C., Dinaharan I., Vijay S.J., Murugan N.: Microstructure and sliding wear behaviour of AA6360/(Tic+B4C) hybrid surface composite layer synthesized by friction stir processing on aluminium substrate. Mater. Sci. Eng. A 552, 336–344 (2012)

    Article  Google Scholar 

  28. Kumar K., Sathish Kailas: The role of friction stir welding tool on material flow and weld formation. Mater. Sci. Eng. A 485, 367–374 (2008)

    Article  Google Scholar 

  29. Sathiskumar R., Murugan N., Dinaharan I., Vijay S.J.: Prediction of mechanical and wear properties of copper surface composites fabricated using friction stir processing. Mater. Des. 55, 224–234 (2014)

    Article  Google Scholar 

  30. Sahraeinejad S., Izadi H., Haghshenas M., Gerlich A.P.: Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters. Mater. Sci. Eng. A 626, 505–513 (2015)

    Article  Google Scholar 

  31. Barmouz M., Asadi P., Besharati Givi M.K., Taherishargh M.: Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: effect of SiC particles’ size and volume fraction. Mater. Sci. Eng. A 528, 1740–1749 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Senthil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puviyarasan, M., Senthil Kumar, V.S. An Experimental Investigation for Multi-Response Optimization of Friction Stir Process Parameters During Fabrication of AA6061/B4Cp Composites. Arab J Sci Eng 40, 1733–1741 (2015). https://doi.org/10.1007/s13369-015-1654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1654-5

Keywords

Navigation