Skip to main content

Advertisement

Log in

A Novel Archimedes Optimization Algorithm with Levy Flight for Designing Microstrip Patch Antenna

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Archimedes optimization algorithm (AOA) based on the principle of upward force on an object, partially or completely submerged in a liquid, in proportion to the weight of the dispersed liquid has been introduced. It is most famous for its efficiency, simplicity and robustness, but at the same time, it faces problems of premature and slow convergence, due to which it gets trapped in local minima. To overcome these shortcomings, the levy flight has been merged with AOA under this work, hence named as Levy Flight Archimedes optimizer (LAO). Here, the levy flight phase has been used for random walk determining step size. Levy flight plays an important role for improving the exploration phase and for ignoring the local optima of the AOA algorithm during the search process. In this proposed methodology, the limit of each variable is fixed for all decision variables, and if the variable could not mend its own optima solution in the search space at the end of present generation, such limit is improved. If the decision variable crosses the limit value, the levy flight phase helps the decision variable for controlling the speed. The robustness and efficiency of the evolutionary methods have been examined on well-known 29-CEC 2017 test functions and also compared with recent evolutionary algorithms. Furthermore, it has also been successfully applied on four different antenna issues. The metaheuristics MATLAB-R2018a codes have been linked with the two different simulators such as computer simulation tool and ADS (Keysight advanced design system software) to simulate the antennas. Simulated results of LAO method and other metaheuristics have been compared with respect to gain, return loss, directivity, efficiency, fitness score, bandwidth, VSWR, reflection coefficient to prove the robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Fatai, A.; Khoukhi, A.; Abdulraheem, A.: Investigating the effect of training-testing data stratification on the performance of soft computing techniques: an experimental study. J. Exp. Theor. Artif. Intell. 29(3), 517–535 (2017)

    Article  Google Scholar 

  2. Khoukhi, A.: Hybrid soft computing systems for reservoir PVT properties prediction. Comput. Geosci. 44, 109–119 (2012)

    Article  Google Scholar 

  3. Houssein, E. H., Mina, Y., Aboul, E. H.: Nature-inspired algorithms: a comprehensive review. In: Hybrid Computational Intelligence: Research and Applications, CRC Press, 2019, p. 1

  4. Ewees, A.A.; Elaziz, M.A.; Houssein, E.H.: Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst. Appl. 112, 156–172 (2018)

    Article  Google Scholar 

  5. Tharwat, A.; Essam, H.H.; Mohammed, M.A.; Aboul, E.H.; Thomas, G.: Mogoa algorithm for constrained and unconstrained multi-objective optimization problems. Appl. Intell. 48(8), 2268–2283 (2018)

    Article  Google Scholar 

  6. Neggaz, N.; Essam, H.H.; Kashif, H.: An efficient henry gas solubility optimization for feature selection. Expert Syst. Appl. 152, 113364 (2020)

    Article  Google Scholar 

  7. Ahmed, M.M.; Houssein, E.H.; Hassanien, A.E.; Taha, A.; Hassanien, E.: Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm. Telecommun. Syst. 72(2), 243–259 (2019)

    Article  Google Scholar 

  8. Houssein, E.H.; Saad, M.R.; Hussain, K.; Zhu, W.; Shaban, H.; Hassaballah, M.: Optimal sink node placement in large scale wireless sensor networks based on Harris’ optimization algorithm. IEEE Access 8, 19381–19397 (2020)

  9. Singh, N.; Singh, S. B.; Houssein, E. H.: Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions. Evolut. Intell. (2020) 1–34

  10. Hashim, F.A.; Essam, H.H.; Kashif, H.; Mai, S.M.; Walid, A.A.: A modified henry gas solubility optimization for solving motif discovery problem. Neural Comput. Appl. 32(14), 10759–10771 (2020)

    Article  Google Scholar 

  11. Houssein, E.H.; Mosa, E.H.; Diego, O.; Waleed, M.M.; Hassaballah, M.: A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Comput. Chem. Eng. 133, 106656 (2020)

    Article  Google Scholar 

  12. Singh, A.; Mehra, R.M.; Pandey, V.K.: Design and optimization of microstrip patch antenna for UWB applications using moth-flame optimization algorithm. Wireless Pers. Commun. 112, 2485–2502 (2020)

    Article  Google Scholar 

  13. Kaveh, A.; Akbari, H.; Hosseini, S.: Plasma generation optimization: a new physically-based metaheuristic algorithm for solving constrained optimization problems. Eng. Comput. 38(4), 1–5 (2020)

    Google Scholar 

  14. Liu, Y.; Cao, B.; Li, H.: Improving ant colony optimization algorithm with epsilon greedy and levy flight. Compl. Intell. Syst. 7(1), 1711–1722 (2021). https://doi.org/10.1007/s40747-020-00138-3.

    Article  Google Scholar 

  15. Barshandeh, S.: Haghzadeh, A new hybrid chaotic atom search optimization based on tree–seed algorithm and levy fight for solving optimization problems, Engineering with Computers https://doi.org/10.1007/s00366-020-00994-0

  16. Russell, E., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, (1995), pp. 39–43

  17. Bonabeau, E.; Dorigo, M.; Théraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems, vol. 1. Oxford University Press, Oxford (1999)

    Book  Google Scholar 

  18. Van, L., Peter, J. M., Aarts, E. H. L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, Springer, Berlin, pp 7–15 (1987)

  19. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S.: Henry gas solubility optimization: a novel physics-based algorithm. Futur. Gener. Comput. Syst. 101, 646–667 (2019)

    Article  Google Scholar 

  20. Gandomi, A.H.; Yang, X.S.; Alavi, A.H.: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng. Comput. 29(1), 17–35 (2013)

    Article  Google Scholar 

  21. Mirjalili, S.: Sca: A sine cosine algorithm for solving optimization problems. In: Knowledge-Based Systems, Elsevier, pp. 120–133 (2016)

  22. Hashim, F. A.; Hussain, K. H. et al., Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problem. In: Applied Intelligence, pp. 1–21 (2020). https://doi.org/10.1007/s10489-020-01893-z

  23. Khishe, M.; Mosavi M. R: Chimp optimization algorithm. In: Expert Systems with Applications, Vol. 149, Elsevier, p. 113338 (2020)

  24. Houssein, E.H.; Saad, M.R.; Hashim, F.A.; Shaban, H.; Hassaballah, M.: Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 94, 103731 (2020)

    Article  Google Scholar 

  25. Singh, N.; Singh, S.B.: One half global best position particle swarm optimization algorithm. Int. J. Sci. Eng. Res. 2(8), 1–10 (2011)

    Google Scholar 

  26. Singh, N.; Singh, S.B.: Personal best position particle swarm optimization. J. Appl. Comput. Sci. Math. 12(6), 69–76 (2012)

    Google Scholar 

  27. Singh, N.; Singh, S.; Singh, S.B.: Half mean particle swarm optimization algorithm. Int. J. Sci. Eng. Res. 3(8), 1–9 (2012)

    Google Scholar 

  28. Singh, N.; Hachimi, H.: A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization. Math. Comput. Appl. 23(14), 1–32 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Singh, N.; Singh, S.; Singh, S.B.: Hpso:a new version of particle swarm optimization algorithm. J. Artif. Intell. 3(3), 123–134 (2012)

    Google Scholar 

  30. Singh, N., Singh, S. B.: Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J. Appl. Math’s. 2017 (2030489), pp. 1–15 (2012)

  31. Singh, N.; Singh, S.B.: A new hybrid MGBPSO-GSA variant for improving function optimization solution in search space. Evol. Bio. 13(1), 1–13 (2017)

    Google Scholar 

  32. Singh, N.; Singh, S.B.: A novel hybrid gwo-sca approach for optimization problems. Eng. Sci. Tech. Int. J. 20(6), 1586–1601 (2017)

    Google Scholar 

  33. Singh, N.; Singh, S.B.: A modified mean grey wolf optimization approach for benchmark and biomedical problems. Evol. Bio. 13(1), 1–28 (2017)

    Google Scholar 

  34. Singh, N.: A modified variant of grey wolf optimizer. Sci. Iran. Int. J. Sci. Technol. 1(1), 1–31 (2019)

    Google Scholar 

  35. Singh, N.; Singh, S.B.; Houssein, E.H.: Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions. Evol. Intel. 1(1), 1–31 (2020). https://doi.org/10.1007/s12065-020-00486-6.

    Article  Google Scholar 

  36. Kaur, M.; Kaur, R.; Singh, N.; Dhiman, G.: Schoa: An newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Comput. Eng. 1(1), 1–36 (2020). https://doi.org/10.1007/s00366-020-01233-2.

    Article  Google Scholar 

  37. Singh, N.; Son, L.H.; Chiclana, F.; Magnot, J.P.: A new fusion of salp swarm with sine cosine for optimization of non-linear functions. Computer and Engineering 36(1), 185–212 (2020). https://doi.org/10.1007/s00366-018-00696-8.

    Article  Google Scholar 

  38. Teimouri, M.; Mahbod, M.; Asgari, M.: Topology-optimized hybrid solid-lattice structures for efficient mechanical performance. Structures 29, 549–560 (2021). https://doi.org/10.1016/j.istruc.2020.11.055.

    Article  Google Scholar 

  39. Abdullah, J.; Rahim, A.: Chaotic atom search optimization for feature selection. Arab. J. Sci. Eng. 45(8), 6063–6079 (2020)

    Article  Google Scholar 

  40. Kaveh, A.; Hosseini, S.M.; Zaerreza, A.: Boundary strategy for optimization-based structural damage detection problem using metaheuristic algorithms. Periodica Polytechnica Civ. Eng. 65(1), 150–167 (2021). https://doi.org/10.3311/PPci.16924.

    Article  Google Scholar 

  41. Zhou, B.; Lei, Y.: Bi-objective grey wolf optimization algorithm combined levy flight mechanism for the FMC green scheduling problem. Appl. Soft Comput. 11(1), 107717 (2021). https://doi.org/10.1016/j.asoc.2021.107717.

    Article  Google Scholar 

  42. Hamouda, E.; Abohamama, A.S.; Tarek, M.: Random projection-based feature transformation using metaheuristic optimization algorithm. Arab. J. Sci. Eng. 46(1), 8345–8353 (2021). https://doi.org/10.1007/s13369-021-05474-1.

    Article  Google Scholar 

  43. Du, D.C.; Vinh, H.H.; Trung, V.D.; Quyen, H.; Trung, N.T.: Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function. Eng. Optim. 50(8), 1233–1251 (2018). https://doi.org/10.1080/0305215X.2017.1367392.

    Article  MathSciNet  Google Scholar 

  44. Nshimirimana, R.; Abraham, A.; Nothnagel, G.: A multi-objective particle swarm for constraint and unconstrained problems. Neural Comput. Appl. 33(1), 11355–11385 (2021). https://doi.org/10.1007/s00521-020-05555-6.

    Article  Google Scholar 

  45. Khandelwal, A.; Bhurke, A.; Rahul, K.: A review on optimization of micro strip patch antenna. Int. J. Innov. Res. Sci. Eng. Technol. 6(11), 21243–21251 (2017)

    Google Scholar 

  46. Qubati, G.M.; Dib, N.I.: Microstrip patch antenna optimization using modified central force optimization. Progress Electromagn. Res. B 21, 281–298 (2010)

    Article  Google Scholar 

  47. Saddi, M. A., Aydin, C., Atilla, D. C.: Size reduction technique of microstrip patch antenna using saw teeth slots. In: 2018 18th Mediterranean Microwave Symposium (MMS), IEEE, pp. 71–74 (2018)

  48. Kaur, I., Singh, M. J. Gupta, A K, S.: Si, Designing and analysis of microstrip patch antenna for uwb applications. In: 2018 3rd International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), IEEE, pp. 1–3 (2018)

  49. Baudha, S.; Kapoor, K.; Varun, Y. M.: U-shaped microstrip patch antenna with partial ground plane for mobile satellite services (MSS). In: 2019 URSI Asia-Pacific radio science conference (AP-RASC), IEEE, pp. 1–5 (2019)

  50. Chechkin, A. V.; Metzler, R.; Klafter, J.; Gonchar, V. Y.: Introduction to the theory of lévy flights. In: R Klages, G Radons, IM Sokolov (eds.) Anomalous Transport:Foundations and Applications.

  51. Yang, X. S., Deb, S.: Multiobjective cuckoo search for design optimization. In: Computers and Operations Research, vol. 40, pp. 1616–1624 (2013)

  52. Yang, X. S.: Engineering optimization an introduction with metaheuristic applications. In: First ed.

  53. Lee, C. Y., Yao, X.: Evolutionary algorithms with adaptive levy mutations. In: Proceeding of the 2001 Congress on Evolutionary Computation.

  54. Al-Temeemy, A. A.; Spencer, J. W.; Ralph, J. F.: Levy flights for improved Ladar scanning. In: 2010 IEEE International Conference on Imaging Processing

  55. Das, K., Mukherjee, V., Das, D.: Student psychology based optimization algorithm: a new population based optimization algorithm for solving optimization problems. In: Advances in Engineering Software, vol. 146

  56. Awad, N.H.; Ali, M.Z.; Suganthan, P.N.: Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving cec2017 benchmark problems. In: IEEE Congress on Evolutionary Computation (CEC). IEEE, vol. 2017, pp. 372–379 (2017)

  57. Van Den Berg, R. A.; Pogromsky, A. Y.; Leonov, G. A.; Rooda, J. E.: Design of convergent switched systems. In: Group coordination and cooperative control, Springer, pp. 291–311 (2006)

  58. Rahim, H. A.: On-body textile monopole antenna characterisation for body-centric wireless communications. In: Proceeding of Prog. in Electromagnetics Res. Symp.(PIERS), pp. 1377–1380 (2012)

  59. Gill, I., Garcia, R. F.: Wearable gps patch antenna on jeans fabric. In: Proceeding of Prog. in Electromagnetics Res. Symp.(PIERS), pp. 2019–2022 (2016)

  60. Parmar, C., Joshi, S.: Wearable textile microstrip patch antenna for multiple ism band communications. In: Global Conference on Communication Technologies (GCCT)

  61. Embong, E. N. F. S. E., Rani, K. N. A., Rahim, H. A.: The wearable textile-based microstrip patch antenna preliminary design and development. In: Proceedings of IEEE 3rd International Conference on Engineering Technologies and Social Sciences (ICETSS), vol. 1 (2017), pp. 1–5. https://doi.org/10.1109/ICETSS.2017.8324149

  62. Lim, E. G., Wang, Z., Leach, M, Zhou, R., Lok, K., Man, Zhang, N.: Compact size of textile wearable antenna. In: Proceedings of the International MultiConference of Engineers and Computer Scientists(IMECS) II, pp. 1–5 (2014)

  63. Jin, N.; Rahmat, S.Y.: Parallel particle swarm optimization and finite-difference time-domain (pso/fdtd) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag. 53(11), 3459–3468 (2005)

    Article  Google Scholar 

  64. Liu, X.Y.; Chen, Y.J.; Zhang, F.: Modified particle swarm optimization for patch antenna design based on IE3D. J. Electromagn. Waves Appl. 21(13), 1819–1828 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Kaur, R. A Novel Archimedes Optimization Algorithm with Levy Flight for Designing Microstrip Patch Antenna. Arab J Sci Eng 47, 3683–3706 (2022). https://doi.org/10.1007/s13369-021-06307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06307-x

Keywords

Navigation