Skip to main content

Advertisement

Log in

Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The sink nodes in large-scale wireless sensor networks (LSWSNs) are responsible for receiving and processing the collected data from sensor nodes. Identifying the locations of sink nodes in LSWSNs play a vital role in term of saving energy. Furthermore, sink nodes have extremely extra resources such as large memory, powerful batteries, long-range antenna, etc. This paper proposes a multi-objective whale optimization algorithm (MOWOA) to determine the lowest number of sink nodes that cover the whole network. The major aim of MOWOA is to reduce the energy consumption and prolongs the lifetime of LSWSNs. To achieve these objectives, a fitness function has been formulated to decrease energy consumption and maximize the network’s lifetime. The experimental results revealed that the proposed MOWOA achieved a better efficiency in reducing the total power consumption by 26% compared with four well-known optimization algorithms: multi-objective grasshopper optimization algorithm, multi-objective salp swarm algorithm, multi-objective gray wolf optimization, multi-objective particle swarm optimization over all networks sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications magazine, 40(8), 102–114.

    Article  Google Scholar 

  2. Espinosa-Ramos, J. I., et al. (2012). A new objective function to build seismic networks using differential evolution. In 2012 IEEE congress on evolutionary computation (CEC) (pp. 1–7). IEEE.

  3. Chattopadhyay, S., & Vijayalakshmi, G. (2014). Improving the lifetime of wireless sensor network through energy conservation. International Journal of Computer Science and Information Technologies, 5(2), 2345–2347.

    Google Scholar 

  4. Osamaa, A., El-Said, S. A., & Hassanien, A. E. (2016). Energy-efficient routing techniques for wireless sensors networks. In Handbook of research on emerging technologies for electrical power planning, analysis, and optimization (pp. 37–62). IGI Global.

  5. Coello, C. A. C. (2009). Evolutionary multi-objective optimization: Some current research trends and topics that remain to be explored. Frontiers of Computer Science in China, 3(1), 18–30.

    Article  Google Scholar 

  6. Deb, K. (2011). Multi-objective optimisation using evolutionary algorithms: An introduction. In Multi-objective evolutionary optimisation for product design and manufacturing (pp. 3–34). Springer.

  7. Ewees, A. A., Elaziz, M. A., & Houssein, E. H. (2018). Improved grasshopper optimization algorithm using opposition-based learning. Expert Systems with Applications, 112, 156–172.

    Article  Google Scholar 

  8. Tharwat, A., Houssein, E. H., Ahmed, M. M., Hassanien, A. E., & Gabel, T. (2017). Mogoa algorithm for constrained and unconstrained multi-objective optimization problems. Applied Intelligence, 1–16.

  9. Pradhan, P. M., & Panda, G. (2012). Connectivity constrained wireless sensor deployment using multiobjective evolutionary algorithms and fuzzy decision making. Ad Hoc Networks, 10(6), 1134–1145.

    Article  Google Scholar 

  10. Oyman, E. I., & Ersoy, C. (2004). Multiple sink network design problem in large scale wireless sensor networks. In 2004 IEEE international conference on communications (Vol. 6, pp. 3663–3667). IEEE.

  11. Kim, H., Seok, Y., Choi, N., Choi, Y., & Kwon, T. (2005). Optimal multi-sink positioning and energy-efficient routing in wireless sensor networks. In International conference on information networking (pp. 264–274). Springer.

  12. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on wireless communications, 1(4), 660–670.

    Article  Google Scholar 

  13. Ahmed, M. M., Taha, A., Hassanien, A. E., & Hassanien, E. (2018). An optimized k-nearest neighbor algorithm for extending wireless sensor network lifetime. In International conference on advanced machine learning technologies and applications (pp. 506–515). Springer.

  14. Peiravi, A., Mashhadi, H. R., & Hamed Javadi, S. (2013). An optimal energy-efficient clustering method in wireless sensor networks using multi-objective genetic algorithm. International Journal of Communication Systems, 26(1), 114–126.

    Article  Google Scholar 

  15. Armano, G., & Farmani, M. R. (2016). Multiobjective clustering analysis using particle swarm optimization. Expert Systems with Applications, 55, 184–193.

    Article  Google Scholar 

  16. Snasel, V., Kong, L., Tsai, P., & Pan, J.-S. (2016). Sink node placement strategies based on cat swarm optimization algorithm. Journal of Network Intelligence, 1(2), 52–60.

    Google Scholar 

  17. Ahmed, M. M., Houssein, E. H., Hassanien, A. E., Taha, A., & Hassanien, E. (2017). Maximizing lifetime of wireless sensor networks based on whale optimization algorithm. In International conference on advanced intelligent systems and informatics (pp. 724–733). Springer.

  18. Fouad, M. M., Snasel, V., & Hassanien, A. E. (2015). Energy-aware sink node localization algorithm for wireless sensor networks. International Journal of Distributed Sensor Networks, 11(7), 810356.

    Article  Google Scholar 

  19. Saravanan, M., & Madheswaran, M. (2014). A hybrid optimized weighted minimum spanning tree for the shortest intrapath selection in wireless sensor network. Mathematical Problems in Engineering.

  20. Rani, K. S. S., & Devarajan, N. (2012). Optimization model for sensor node deployment. European Journal of Scientific Research, 70(4), 491–498.

    Google Scholar 

  21. Jena, R. (2014). Artificial bee colony algorithm based multi-objective node placement for wireless sensor network. International Journal of Information Technology and Computer Science (IJITCS), 6(6), 25.

    Article  Google Scholar 

  22. Vincze, Z., Fodor, K., Vida, R., & Vidács, A. (2006). Electrostatic modelling of multiple mobile sinks in wireless sensor networks. In Proceedings of the IFIP networking workshop on performance control in wireless sensor networks (PWSN 2006), Coimbra, Portugal (pp. 30–37).

  23. Fei, Z., Li, B., Yang, S., Xing, C., Chen, H., & Hanzo, L. (2017). A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems. IEEE Communications Surveys & Tutorials, 19(1), 550–586.

    Article  Google Scholar 

  24. Hussien, A. G., Hassanien, A. E., Houssein, E. H., Bhattacharyya, S., & Amin, M. (2019). S-shaped binary whale optimization algorithm for feature selection. In Recent trends in signal and image processing (pp. 79–87). Springer.

  25. Blagojevic, M., Geilen, M., Basten, T., & Hendriks, T. (2012). Fast sink placement for gossip-based wireless sensor networks. In 2012 IEEE 31st international on performance computing and communications conference (IPCCC) (pp. 110–119). IEEE.

  26. Abidin, H. Z., Din, N. M., & Jalil, Y. E. (2013). Multi-objective optimization (MOO) approach for sensor node placement in WSN. In 2013 7th International conference on signal processing and communication systems (ICSPCS) (pp. 1–5). IEEE.

  27. Chen, F., & Li, R. (2013). Sink node placement strategies for wireless sensor networks. Wireless Personal Communications, 68(2), 303–319.

    Article  Google Scholar 

  28. Hacioglu, G., Kand, V. F. A., & Sesli, E. (2016). Multi objective clustering for wireless sensor networks. Expert Systems with Applications, 59, 86–100.

    Article  Google Scholar 

  29. Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A tutorial on evolutionary multiobjective optimization. In Metaheuristics for multiobjective optimisation (pp. 3–37).

  30. Binh, H. T. T., Hanh, N. T., Dey, N., et al. (2018). Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Computing and Applications, 30(7), 2305–2317.

    Article  Google Scholar 

  31. Shankar, T., Shanmugavel, S., & Rajesh, A. (2016). Hybrid HSA and PSO algorithm for energy efficient cluster head selection in wireless sensor networks. Swarm and Evolutionary Computation, 30, 1–10.

    Article  Google Scholar 

  32. Marks, M. (2010). A survey of multi-objective deployment in wireless sensor networks. Journal of Telecommunications and Information Technology, 3, 36–41.

    Google Scholar 

  33. Iqbal, M., Naeem, M., Anpalagan, A., Qadri, N. N., & Imran, M. (2016). Multi-objective optimization in sensor networks: Optimization classification, applications and solution approaches. Computer Networks, 99, 134–161.

    Article  Google Scholar 

  34. Abidin, H. Z., Din, N. M., & Radzi, N. A. M. (2013). Deterministic static sensor node placement in wireless sensor network based on territorial predator scent marking behaviour. International Journal of Communication Networks and Information Security (IJCNIS), 5(3), 186–192.

    Google Scholar 

  35. Zainol Abidin, H., & Din, N. M. (2013). Sensor node placement in wireless sensor network based on territorial predator scent marking algorithm. ISRN Sensor Networks.

  36. Shareef, A. Q., & Mijwel, M. M. (2014). Improved accuracy distribution localization in wireless sensor networks. International Journal of Computer Science and Mobile Computing, 3(6), 286–296.

    Google Scholar 

  37. Chen, B., Jamieson, K., Balakrishnan, H., & Morris, R. (2002). Span: An energy-efficient coordination algorithm for topology maintenance in ad hoc wireless networks. Wireless Networks, 8(5), 481–494.

    Article  Google Scholar 

  38. Konstantinidis, A., & Yang, K. (2011). Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D. Applied Soft Computing, 11(6), 4117–4134.

    Article  Google Scholar 

  39. Coello, C. A. (2000). An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys (CSUR), 32(2), 109–143.

    Article  Google Scholar 

  40. Van Veldhuizen, D. A., & Lamont, G. B. (1998). Multiobjective evolutionary algorithm research: A history and analysis. Technical report, TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

  41. Sierra, M. R., & Coello, C. C. (2005). Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. In Evolutionary multi-criterion optimization (Vol. 3410, pp. 505–519). Springer.

  42. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Article  Google Scholar 

  43. Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2017). Grasshopper optimization algorithm for multi-objective optimization problems. Applied Intelligence, 1–16.

  44. Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mirjalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 114, 163–191.

    Article  Google Scholar 

  45. Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. d S. (2016). Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Systems with Applications, 47, 106–119.

    Article  Google Scholar 

  46. Reyes-Sierra, M., & Coello, C. C. (2006). Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International journal of computational intelligence research, 2(3), 287–308.

    Google Scholar 

  47. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182–197.

    Article  Google Scholar 

  48. Wightman, P. M., & Labrador, M. A. (2011). A3Cov: A new topology construction protocol for connected area coverage in WSN. In 2011 IEEE on wireless communications and networking conference (WCNC) (pp. 522–527). IEEE.

  49. Banka, H., & Jana, P. K., et al. (2016). PSO-based multiple-sink placement algorithm for protracting the lifetime of wireless sensor networks. In Proceedings of the second international conference on computer and communication technologies (pp. 605–616). Springer.

  50. Dandekar, D. R., & Deshmukh, P. (2013). Energy balancing multiple sink optimal deployment in multi-hop wireless sensor networks. In 2013 IEEE 3rd international on advance computing conference (IACC) (pp. 408–412). IEEE.

  51. Kaur, N., Bedi, R. K., & Gangwar, R. (2016). A new sink placement strategy for WSNs. In International Conference on ICT in business industry & government (ICTBIG) (pp. 1–5). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed M. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.M., Houssein, E.H., Hassanien, A.E. et al. Maximizing lifetime of large-scale wireless sensor networks using multi-objective whale optimization algorithm. Telecommun Syst 72, 243–259 (2019). https://doi.org/10.1007/s11235-019-00559-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00559-7

Keywords

Navigation