Skip to main content
Log in

Review of Natural Convection Within Various Shapes of Enclosures

  • Review--Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The previous studies related to the thermal-driven flow within enclosures had been summarized in the present work. Various geometries of enclosures like square, rectangular and triangular had been summarized. Besides, enclosures filled with different fluids had been taken into consideration like traditional and nanofluids as well as porous medium, Newtonian and non-Newtonian fluids and multilayer systems. The governing equations of heat transfer and fluid flows had been presented for different cases. Different numerical models like homogeneous, inhomogeneous and thermal non-equilibrium model, Darcy, Darcy extended–Forchheimer model, etc., had been summarized. The influence of various dimensionless parameters like Rayleigh, Darcy, Bejan and Hartmann number, nanofluid loading, diverse thermal cases of the applied boundary conditions, angle of inclination, the number for undulations, the existence of inner body and many others parameters acting and influencing hardly up on both of the entropy generation and the heat transfer was illustrated. The present review illustrates the physical mechanism behind the buoyancy thermally driven flow in terms of figures of contours as well as the Nusselt numbers profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Abbreviations

C p :

Specified heat at a steady pressure (kJ/kg.K)

g :

Acceleration of gravity (m/s2)

k :

Thermal conductivity (W/m.K)

P :

Pressure without dimension

p :

Pressure (Pa)

Pr:

Prandtl number (νf/αf)

R :

Radiation parameter

Ra:

Rayleigh number \( (g \beta_{f} L^{3} \Delta T / \nu _{f} \alpha _{f} )\)

Ha:

Hartmann number

T :

Temperature (K)

T c :

The cold surface’s temperature (K)

\( \varepsilon \) :

Porosity

L :

Length and height of enclosure

Y O :

Distance between original and wavy wall

\( \Omega \) :

Vorticity

d p :

Nanoparticle diameter

K r :

Thermal conductivity ratio

\(\delta \) :

Position of the inner body moved vertically

\(\zeta \) :

Position of the inner body moved diagonally

B :

Length of heat source

D :

Position of heat source

Q :

Internal heat generation/absorption coefficient

\(\Delta T\) :

Temperature difference

T * :

The temperature without dimension (TTc/ThTc)

μ :

Dynamic viscosity (kg/ms)

ρ :

Density (kg/m3)

T h :

The hot surface’s temperature (K)

u :

The component of velocity in x-axis (m/s)

y :

Cartesian coordinate in vertical axis (m)

V :

The component of dimensionless velocity in y-axis

v :

The component of velocity in y-axis (m/s)

X :

Dimensionless coordinate in horizontal axis

x :

Cartesian coordinates in horizontal direction (m)

Y :

Dimensionless coordinate in vertical direction

A :

Aspect ratio

U :

The component of the dimensionless velocity in x-axis (m/s)

Nul :

Localized number of Nusselt the hot

N :

Undulation number

AR :

Aspect ratio

Nuave :

Average Nusselt number

F :

Frequency

LTNE:

Local thermal non-equilibrium model

\(\psi \) :

Dimensionless stream function

\(\Psi \) :

The function of dimensional stream (m2/s)

β :

Thermal expansion volumetric coefficient (K1)

φ :

Nanofluid volume fraction

λ :

Amplitude

\(\phi\) :

Inclination angle

α :

The diffusivity of heat (m2/s)

ν :

Kinematic viscosity (μ /ρ)(m2s1)

γ :

Phase deviation

\(\Gamma\) :

Basis function

References

  1. Lee, S., et al.: Design and fabrication of a micro fuel cell array with “flip-flop” interconnection. J. Power Sources 112(2), 410–418 (2002)

    Article  Google Scholar 

  2. Arik, M.; Garg, J.; Bar-Cohen, A.: Thermal modeling and performance of high heat flux SOP packages. IEEE Trans. Adv. Packag. 27(2), 398–412 (2004)

    Article  Google Scholar 

  3. Singh, H.; Eames, P.C.: A review of natural convective heat transfer correlations in rectangular cross-section cavities and their potential applications to compound parabolic concentrating (CPC) solar collector cavities. Appl. Therm. Eng. 31(14–15), 2186–2196 (2011)

    Article  Google Scholar 

  4. Baïri, A.; Zarco-Pernia, E.; de María, J.M.G.: A review on natural convection in enclosures for engineering applications The particular case of the parallelogrammic diode cavity. Appl. Thermal Eng. 63(1), 304–322 (2014)

    Article  Google Scholar 

  5. Hemmat Esfe, M., et al.: A comprehensive review on convective heat transfer of nanofluids in porous media: Energy-related and thermohydraulic characteristics. Appl. Thermal Eng. 178, 115487 (2020)

    Article  Google Scholar 

  6. Das, D.; Roy, M.; Basak, T.: Studies on natural convection within enclosures of various (non-square) shapes—A review. Int. J. Heat Mass Transf. 106, 356–406 (2017)

    Article  Google Scholar 

  7. Biswal, P.; Basak, T.: Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: a review. Renew. Sustain. Energy Rev. 80, 1412–1457 (2017)

    Article  Google Scholar 

  8. Miroshnichenko, I.V.; Sheremet, M.A.: Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: a review. Renew. Sustain. Energy Rev. 82, 40–59 (2018)

    Article  Google Scholar 

  9. Pandey, S.; Park, Y.G.; Ha, M.Y.: An exhaustive review of studies on natural convection in enclosures with and without internal bodies of various shapes. Int. J. Heat Mass Transf. 138, 762–795 (2019)

    Article  Google Scholar 

  10. Sadeghi, M.S.; et al.: On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. J. Thermal Anal. Calorimet. 141, 1–22 (2020)

  11. Basak, T.; Roy, S.; Balakrishnan, A.: Effects of thermal boundary conditions on natural convection flows within a square cavity. Int. J. Heat Mass Transf. 49(23–24), 4525–4535 (2006)

    Article  MATH  Google Scholar 

  12. Aydin, O.; Ünal, A.; Ayhan, T.: Natural convection in rectangular enclosures heated from one side and cooled from the ceiling. Int. J. Heat Mass Transf. 42(13), 2345–2355 (1999)

    Article  MATH  Google Scholar 

  13. Sarris, I.; Lekakis, I.; Vlachos, N.: Natural convection in a 2D enclosure with sinusoidal upper wall temperature. Numer. Heat Transfer: Part A: Appl. 42(5), 513–530 (2002)

    Article  Google Scholar 

  14. Haese, P.; Teubner, M.: Heat exchange in an attic space. Int. J. Heat Mass Transf. 45(25), 4925–4936 (2002)

    Article  MATH  Google Scholar 

  15. Salmun, H.: Convection patterns in a triangular domain. Int. J. Heat Mass Transf. 38(2), 351–362 (1995)

    Article  MATH  Google Scholar 

  16. Wooding, R.: Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 2(3), 273–285 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bhattacharya, M.; Basak, T.: On multiple steady states for natural convection (low Prandtl number fluid) within porous square enclosures: effect of nonuniformity of wall temperatures. Int. J. Heat Mass Transf. 59, 230–246 (2013)

    Article  Google Scholar 

  18. Singh, A.K., et al.: Role of entropy generation on thermal management during natural convection in tilted porous square cavities. J. Taiwan Inst. Chem. Eng. 50, 153–172 (2015)

    Article  Google Scholar 

  19. Mansour, M.; Bakier, M.: Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid. Int. Commun. Heat Mass Transfer 44, 108–115 (2013)

    Article  Google Scholar 

  20. Ghasemi, B.; Aminossadati, S.: Brownian motion of nanoparticles in a triangular enclosure with natural convection. Int. J. Therm. Sci. 49(6), 931–940 (2010)

    Article  Google Scholar 

  21. Koo, J.; Kleinstreuer, C.: Laminar nanofluid flow in microheat-sinks. Int. J. Heat Mass Transf. 48(13), 2652–2661 (2005)

    Article  MATH  Google Scholar 

  22. Abu-Nada, E., et al.: Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 49(3), 479–491 (2010)

    Article  Google Scholar 

  23. Turan, O.; Chakraborty, N.; Poole, R.J.: Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls. J. Nonnewton. Fluid Mech. 165(15), 901–913 (2010)

    Article  MATH  Google Scholar 

  24. Turan, O., et al.: Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J. Nonnewton. Fluid Mech. 166(17), 1049–1063 (2011)

    Article  MATH  Google Scholar 

  25. Turan, O., et al.: Laminar natural convection of power-law fluids in a square enclosure submitted from below to a uniform heat flux density. J. Nonnewton. Fluid Mech. 199, 80–95 (2013)

    Article  Google Scholar 

  26. Pishkar, I., et al.: Numerical study of unsteady natural convection heat transfer of Newtonian and non-Newtonian fluids in a square enclosure under oscillating heat flux. J. Therm. Anal. Calorim. 138(2), 1697–1710 (2019)

    Article  Google Scholar 

  27. Varol, Y.; Oztop, H.F.; Koca, A.: Effects of inclination angle on conduction—natural convection in divided enclosures filled with different fluids. Int. Commun. Heat Mass Transfer 37(2), 182–191 (2010)

    Article  Google Scholar 

  28. Oztop, H.F., et al.: Conjugate natural convection in air filled tube inserted a square cavity. Int. Commun. Heat Mass Transfer 38(5), 590–596 (2011)

    Article  Google Scholar 

  29. Chen, S.; Liu, H.; Zheng, C.: Numerical study of turbulent double-diffusive natural convection in a square cavity by LES-based lattice Boltzmann model. Int. J. Heat Mass Transf. 55(17), 4862–4870 (2012)

    Article  Google Scholar 

  30. Costa, V.A.F.: Natural convection in partially divided square enclosures: Effects of thermal boundary conditions and thermal conductivity of the partitions. Int. J. Heat Mass Transf. 55(25), 7812–7822 (2012)

    Article  Google Scholar 

  31. Huelsz, G.; Rechtman, R.: Heat transfer due to natural convection in an inclined square cavity using the lattice Boltzmann equation method. Int. J. Therm. Sci. 65, 111–119 (2013)

    Article  Google Scholar 

  32. Corcione, M.; Grignaffini, S.; Quintino, A.: Correlations for the double-diffusive natural convection in square enclosures induced by opposite temperature and concentration gradients. Int. J. Heat Mass Transf. 81, 811–819 (2015)

    Article  Google Scholar 

  33. Elatar, A.; Teamah, M.A.; Hassab, M.A.: Numerical study of laminar natural convection inside square enclosure with single horizontal fin. Int. J. Thermal Sci. 99, 41–51 (2016)

    Article  Google Scholar 

  34. Corcione, M.; Habib, E.: Buoyant heat transport in fluids across tilted square cavities discretely heated at one side. Int. J. Therm. Sci. 49(5), 797–808 (2010)

    Article  Google Scholar 

  35. Mukhopadhyay, A.: Analysis of entropy generation due to natural convection in square enclosures with multiple discrete heat sources. Int. Commun. Heat Mass Transfer 37(7), 867–872 (2010)

    Article  Google Scholar 

  36. Corvaro, F.; Paroncini, M.; Sotte, M.: Experimental PIV and interferometric analysis of natural convection in a square enclosure with partially active hot and cold walls. Int. J. Therm. Sci. 50(9), 1629–1638 (2011)

    Article  Google Scholar 

  37. Mobedi, M.; Özkol, Ü.; Sunden, B.: Visualization of diffusion and convection heat transport in a square cavity with natural convection. Int. J. Heat Mass Transf. 53(1), 99–109 (2010)

    Article  MATH  Google Scholar 

  38. Paroncini, M., et al.: A numerical and experimental analysis on natural convective heat transfer in a square enclosure with partially active side walls. Exp. Thermal Fluid Sci. 36, 118–125 (2012)

    Article  Google Scholar 

  39. Selimefendigil, F.; Öztop, H.F.; Al-Salem, K.: Natural convection of ferrofluids in partially heated square enclosures. J. Magn. Magn. Mater. 372, 122–133 (2014)

    Article  Google Scholar 

  40. Wang, L., et al.: Hybrid lattice Boltzmann-TVD simulation of natural convection of nanofluids in a partially heated square cavity using Buongiorno’s model. Appl. Therm. Eng. 146, 318–327 (2019)

    Article  Google Scholar 

  41. Haghshenas, A.; Nasr, M.R.; Rahimian, M.H.: Numerical simulation of natural convection in an open-ended square cavity filled with porous medium by lattice Boltzmann method. Int. Commun. Heat Mass Transfer 37(10), 1513–1519 (2010)

    Article  Google Scholar 

  42. Saleh, H.; Hashim, I.; Saeid, N.: Effect of time periodic boundary conditions on convective flows in a porous square enclosure with non-uniform internal heating. Transp. Porous Media 85(3), 885–903 (2010)

    Article  MathSciNet  Google Scholar 

  43. Carvalho, P.H.S.; de Lemos, M.J.S.: Turbulent free convection in a porous square cavity using the thermal equilibirum model. Int. Commun. Heat Mass Transfer 49, 10–16 (2013)

    Article  Google Scholar 

  44. Ramakrishna, D., et al.: Analysis of heatlines during natural convection within porous square enclosures: effects of thermal aspect ratio and thermal boundary conditions. Int. J. Heat Mass Transf. 59, 206–218 (2013)

    Article  Google Scholar 

  45. Biswal, P.; Nag, A.; Basak, T.: Analysis of thermal management during natural convection within porous tilted square cavities via heatline and entropy generation. Int. J. Mech. Sci. 115–116, 596–615 (2016)

    Article  Google Scholar 

  46. Roy, M.; Roy, S.; Basak, T.: Finite element simulations on heatline trajectories for mixed convection in porous square enclosures: Effects of various moving walls. Eur. J. Mech. B. Fluids 59, 140–160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ho, C.J., et al.: Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int. J. Therm. Sci. 49(8), 1345–1353 (2010)

    Article  Google Scholar 

  48. Lai, F.-H.; Yang, Y.-T.: Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. Int. J. Therm. Sci. 50(10), 1930–1941 (2011)

    Article  Google Scholar 

  49. Basak, T.; Chamkha, A.J.: Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int. J. Heat Mass Transf. 55(21), 5526–5543 (2012)

    Article  Google Scholar 

  50. Oztop, H.F., et al.: A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition. Int. J. Heat Mass Transf. 55(19), 5076–5086 (2012)

    Article  MathSciNet  Google Scholar 

  51. Corcione, M.: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manage. 52(1), 789–793 (2011)

    Article  Google Scholar 

  52. Sheikhzadeh, G.A.; Dastmalchi, M.; Khorasanizadeh, H.: Effects of nanoparticles transport mechanisms on Al2O3–water nanofluid natural convection in a square enclosure. Int. J. Therm. Sci. 66, 51–62 (2013)

    Article  Google Scholar 

  53. Hu, Y., et al.: Experimental and numerical study of natural convection in a square enclosure filled with nanofluid. Int. J. Heat Mass Transf. 78, 380–392 (2014)

    Article  Google Scholar 

  54. Leporini, M., et al.: Experimental and numerical investigation of natural convection in tilted square cavity filled with air. Exp. Thermal Fluid Sci. 99, 572–583 (2018)

    Article  Google Scholar 

  55. Dastmalchi, M.; Sheikhzadeh, G.A.; Abbasian Arani, A.A.: Double-diffusive natural convective in a porous square enclosure filled with nanofluid. Int. J. Thermal Sci. 95, 88–98 (2015)

    Article  Google Scholar 

  56. Fontes, D.H., et al.: Two numerical modelings of free convection heat transfer using nanofluids inside a square enclosure. Mech. Res. Commun. 66, 34–43 (2015)

    Article  Google Scholar 

  57. Sheremet, M.A.; Dinarvand, S.; Pop, I.: Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. Phys. E. 69, 332–341 (2015)

    Article  Google Scholar 

  58. Sheremet, M.A.; Pop, I.; Nazar, R.: Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. Int. J. Mech. Sci. 100, 312–321 (2015)

    Article  Google Scholar 

  59. Mahian, O., et al.: Natural convection of silica nanofluids in square and triangular enclosures: theoretical and experimental study. Int. J. Heat Mass Transf. 99, 792–804 (2016)

    Article  Google Scholar 

  60. Motlagh, S.Y.; Taghizadeh, S.; Soltanipour, H.: Natural convection heat transfer in an inclined square enclosure filled with a porous medium saturated by nanofluid using Buongiorno’s mathematical model. Adv. Powder Technol. 27(6), 2526–2540 (2016)

    Article  Google Scholar 

  61. Alsabery, A., et al.: Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Sci. Rep. 7(1), 1–18 (2017)

    Article  Google Scholar 

  62. Estellé, P., et al.: Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J. Therm. Anal. Calorim. 128(3), 1765–1770 (2017)

    Article  Google Scholar 

  63. Garbadeen, I.D., et al.: Experimental study on natural convection of MWCNT-water nanofluids in a square enclosure. Int. Commun. Heat Mass Transfer 88, 1–8 (2017)

    Article  Google Scholar 

  64. Liao, C.-C.: Heat transfer transitions of natural convection flows in a differentially heated square enclosure filled with nanofluids. Int. J. Heat Mass Transf. 115, 625–634 (2017)

    Article  Google Scholar 

  65. Emami, R.Y.; Siavashi, M.; Shahriari Moghaddam, G.: The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity. Adv. Powder Technl. 29(3), 519–536 (2018)

    Article  Google Scholar 

  66. Al-Balushi, L.M.; Uddin, M.J.; Rahman, M.M.: Natural convective heat transfer in a square enclosure utilizing magnetic nanoparticles. Propulsion Power Res. 8(3), 194–209 (2019)

    Article  Google Scholar 

  67. Al-Srayyih, B.M.; Gao, S.; Hussain, S.H.: Natural convection flow of a hybrid nanofluid in a square enclosure partially filled with a porous medium using a thermal non-equilibrium model. Phys. Fluids 31(4), 043609 (2019)

    Article  Google Scholar 

  68. Wang, D.; Cheng, P.; Quan, X.: A solid-liquid local thermal non-equilibrium lattice Boltzmann model for heat transfer in nanofluids. Part II: natural convection of nanofluids in a square enclosure. Int. J. Heat Mass Transfer 130, 1358–1365 (2019)

    Article  Google Scholar 

  69. Wang, L., et al.: Thermal driven flows inside a square enclosure saturated with nanofluids: convection heat functions and transfer rate revisions from a homogenous model. Numerical Heat Transfer, Part B: Fundamentals 75(4), 265–288 (2019)

    Article  Google Scholar 

  70. Ghasemi, B.; Aminossadati, S.; Raisi, A.: Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int. J. Therm. Sci. 50(9), 1748–1756 (2011)

    Article  Google Scholar 

  71. Ahmed, S.E., et al.: Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium. Nucl. Eng. Des. 266, 34–42 (2014)

    Article  Google Scholar 

  72. Bourantas, G.C.; Loukopoulos, V.C.: MHD natural-convection flow in an inclined square enclosure filled with a micropolar-nanofluid. Int. J. Heat Mass Transf. 79, 930–944 (2014)

    Article  Google Scholar 

  73. Javed, T.; Mehmood, Z.; Abbas, Z.: Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field. Phys. B 506, 122–132 (2017)

    Article  Google Scholar 

  74. Mansour, M.A., et al.: Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3-Cu/water hybrid nanofluid filled with square porous cavity. Thermal Sci. Eng. Progress 6, 57–71 (2018)

    Article  Google Scholar 

  75. Mehryan, S.A.M., et al.: Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field. J. Mol. Liq. 263, 510–525 (2018)

    Article  Google Scholar 

  76. Rashad, A.M., et al.: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin. J. Phys. 56(1), 193–211 (2018)

    Article  Google Scholar 

  77. Song, K.W.; Tagawa, T.: Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field. Int. J. Therm. Sci. 125, 52–65 (2018)

    Article  Google Scholar 

  78. Hajiyan, M.; et al.: Effect of magnetic field-dependent thermal conductivity on natural convection of magnetic nanofluid inside a square enclosure. Int. J. Numer. Meth. Heat Fluid Flow 29(4), 1466–1489 (2019)

  79. Al Kalbani, K.S.; Rahman, M.M.; Ziad Saghir, M.: Entropy generation in hydromagnetic nanofluids flow inside a tilted square enclosure under local thermal nonequilibrium condition. Int. J. Thermofluids 5–6, 100031 (2020)

    Article  Google Scholar 

  80. Zheng, Y.; et al.: Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field. J. Thermal Anal. Calorim. 141, 1–14 (2020)

  81. Kim, B.S., et al.: A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations. Int. J. Heat Mass Transf. 51(7), 1888–1906 (2008)

    Article  MATH  Google Scholar 

  82. Lee, J.M.; Ha, M.Y.; Yoon, H.S.: Natural convection in a square enclosure with a circular cylinder at different horizontal and diagonal locations. Int. J. Heat Mass Transf. 53(25), 5905–5919 (2010)

    Article  MATH  Google Scholar 

  83. Hussain, S.H.; Hussein, A.K.: Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations. Int. Commun. Heat Mass Transfer 37(8), 1115–1126 (2010)

    Article  Google Scholar 

  84. Park, Y.G.; Yoon, H.S.; Ha, M.Y.: Natural convection in square enclosure with hot and cold cylinders at different vertical locations. Int. J. Heat Mass Transf. 55(25), 7911–7925 (2012)

    Article  Google Scholar 

  85. Park, H.K., et al.: A numerical study on natural convection in an inclined square enclosure with a circular cylinder. Int. J. Heat Mass Transf. 66, 295–314 (2013)

    Article  Google Scholar 

  86. Park, Y.G.; Ha, M.Y.; Park, J.: Natural convection in a square enclosure with four circular cylinders positioned at different rectangular locations. Int. J. Heat Mass Transf. 81, 490–511 (2015)

    Article  Google Scholar 

  87. Roslan, R., et al.: Natural convection in an enclosure containing a sinusoidally heated cylindrical source. Int. J. Heat Mass Transf. 70, 119–127 (2014)

    Article  Google Scholar 

  88. Alsabery, A.I., et al.: Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem. Eng. Sci. 201, 247–263 (2019)

    Article  Google Scholar 

  89. Umadevi, P.; Nithyadevi, N.: Convection in a sinusoidally heated square enclosure utilizing Ag−water nanofluid with heat generating solid body. Int. J. Mech. Sci. 131–132, 712–721 (2017)

    Article  Google Scholar 

  90. Dash, S.; Lee, T.: Natural convection in a square enclosure with a square heat source at different horizontal and diagonal eccentricities. Numer. Heat Transfer, Part A: Appl. 68(6), 686–710 (2015)

    Article  Google Scholar 

  91. Pordanjani, A.H., et al.: Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int. J. Heat Mass Transf. 121, 565–578 (2018)

    Article  Google Scholar 

  92. Usman, M.; Khan, Z.H.; Liu, M.B.: MHD natural convection and thermal control inside a cavity with obstacles under the radiation effects. Phys. A Stat. Mech. Appl. 535, 122443 (2019)

    Article  MathSciNet  Google Scholar 

  93. Vijaybabu, T.R.; Dhinakaran, S.: MHD Natural convection around a permeable triangular cylinder inside a square enclosure filled with Al2O3−H2O nanofluid: An LBM study. Int. J. Mech. Sci. 153–154, 500–516 (2019)

    Article  Google Scholar 

  94. Hussain, S.H.; Rahomey, M.S.: Comparison of natural convection around a circular cylinder with different geometries of cylinders inside a square enclosure filled with Ag-nanofluid superposed porous-nanofluid layers. J. Heat Transfer 141(2), 1–12 (2019)

  95. Dogonchi, A., et al.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim. 139(1), 661–671 (2020)

    Article  Google Scholar 

  96. Hong, Y.K.; Baek, S.W.; Kim, M.Y.: Inverse natural convection problem with radiation in rectangular enclosure. Numer. Heat Transfer, Part A Appl. 57(5), 315–330 (2010)

    Article  Google Scholar 

  97. Sivasankaran, S.; Do, Y.; Sankar, M.: Effect of discrete heating on natural convection in a rectangular porous enclosure. Transp. Porous Media 86(1), 261–281 (2011)

    Article  Google Scholar 

  98. Alam, P., et al.: Numerical investigation of natural convection in a rectangular enclosure due to partial heating and cooling at vertical walls. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2403–2414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  99. Nikbakhti, R.; Rahimi, A.B.: Double-diffusive natural convection in a rectangular cavity with partially thermally active side walls. J. Taiwan Inst. Chem. Eng. 43(4), 535–541 (2012)

    Article  Google Scholar 

  100. Cheong, H.T.; Siri, Z.; Sivasankaran, S.: Effect of aspect ratio on natural convection in an inclined rectangular enclosure with sinusoidal boundary condition. Int. Commun. Heat Mass Transfer 45, 75–85 (2013)

    Article  Google Scholar 

  101. El Qarnia, H.; Draoui, A.; Lakhal, E.K.: Computation of melting with natural convection inside a rectangular enclosure heated by discrete protruding heat sources. Appl. Math. Model. 37(6), 3968–3981 (2013)

    Article  Google Scholar 

  102. Li, D., et al.: Optical constants effect on laminar natural convection and radiation in rectangular enclosure with one vertical semitransparent wall. Int. J. Heat Mass Transf. 67, 724–733 (2013)

    Article  Google Scholar 

  103. Wu, C.-H., et al.: The effects of boundary wettability on turbulent natural convection heat transfer in a rectangular enclosure. Int. J. Heat Mass Transf. 63, 249–254 (2013)

    Article  Google Scholar 

  104. Kamkari, B.; Shokouhmand, H.; Bruno, F.: Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure. Int. J. Heat Mass Transf. 72, 186–200 (2014)

    Article  Google Scholar 

  105. Oueslati, F.; Ben-Beya, B.; Lili, T.: Numerical investigation of thermosolutal natural convection in a rectangular enclosure of an aspect ratio four with heat and solute sources. Heat Mass Transf. 50(5), 721–736 (2014)

    Article  Google Scholar 

  106. Qin, Q.; Xia, Z.A.; Tian, Z.F.: High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients. Int. J. Heat Mass Transf. 71, 405–423 (2014)

    Article  Google Scholar 

  107. Elsherbiny, S.M.; Ismail, O.I.: Heat transfer in inclined air rectangular cavities with two localized heat sources. Alex. Eng. J. 54(4), 917–927 (2015)

    Article  Google Scholar 

  108. Morsli, S.; Sabeur, A.; El Ganaoui, M.: Influence of aspect ratio on the natural convection and entropy generation in rectangular cavities with wavy-wall. Energy Procedia 139, 29–36 (2017)

    Article  Google Scholar 

  109. Zhang, D.-D., et al.: Free convective energy management of an inclined enclosure mounted with triple heating elements: multiple morphology optimizations with unique global energy supply. Int. J. Heat Mass Transf. 115, 406–420 (2017)

    Article  Google Scholar 

  110. Hossain, M.; Asghar, S.; Gorla, R.S.R.: Buoyancy-driven flow of a viscous incompressible fluid in an open-ended rectangular cavity with permeable horizontal surfaces. Int. J. Numer. Meth. Heat Fluid Flow 20(7), 759–772 (2010)

  111. Al-Badawi, Y.M.; Duwairi, H.M.: MHD natural convection with Joule and viscous heating effects in iso-flux porous medium-filled enclosures. Appl. Math. Mech. 31(9), 1105–1112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  112. Wu, F.; Zhou, W.; Ma, X.: Natural convection in a porous rectangular enclosure with sinusoidal temperature distributions on both side walls using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 85, 756–771 (2015)

    Article  Google Scholar 

  113. Rahimi, M., et al.: Natural convection of nanoparticle–water mixture near its density inversion in a rectangular enclosure. Int. Commun. Heat Mass Transfer 39(1), 131–137 (2012)

    Article  Google Scholar 

  114. Alloui, Z., et al.: Natural convection of nanofluids in a shallow rectangular enclosure heated from the side. Canadian J. Chem. Eng. 90(1), 69–78 (2012)

    Article  Google Scholar 

  115. Shi, L., et al.: Controllable natural convection in a rectangular enclosure filled with Fe3O4@CNT nanofluids. Int. J. Heat Mass Transf. 140, 399–409 (2019)

    Article  Google Scholar 

  116. Wang, L., et al.: Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int. J. Heat Mass Transf. 128, 688–699 (2019)

    Article  Google Scholar 

  117. Bouhalleb, M.; Abbassi, H.: Natural convection in an inclined rectangular enclosure filled by CuO–H2O nanofluid, with sinusoidal temperature distribution. Int. J. Hydrogen Energy 40(39), 13676–13684 (2015)

    Article  Google Scholar 

  118. Ilyas, S.U.; Pendyala, R.; Narahari, M.: An experimental study on the natural convection heat transfer in rectangular enclosure using functionalized alumina-thermal oil-based nanofluids. Appl. Therm. Eng. 127, 765–775 (2017)

    Article  Google Scholar 

  119. Salari, M.; Malekshah, E.H.; Malekshah, M.H.: Natural convection in a rectangular enclosure filled by two immiscible fluids of air and Al2O3-water nanofluid heated partially from side walls. Alex. Eng. J. 57(3), 1401–1412 (2018)

    Article  Google Scholar 

  120. Teamah, M.A.; Elsafty, A.F.; Massoud, E.Z.: Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source. Int. J. Therm. Sci. 52, 161–175 (2012)

    Article  Google Scholar 

  121. Teamah, M.A., et al.: Numerical simulation of double-diffusive natural convective flow in an inclined rectangular enclosure in the presence of magnetic field and heat source, part A: effect of Rayleigh number and inclination angle. Alex. Eng. J. 50(4), 269–282 (2011)

    Article  MathSciNet  Google Scholar 

  122. Mondal, S.; Sibanda, P.: Unsteady double diffusive convection in an inclined rectangular lid-driven enclosure with different magnetic field angles and non-uniform boundary conditions. Int. J. Heat Mass Transf. 90, 900–910 (2015)

    Article  Google Scholar 

  123. Chen, W.R.: Natural convection heat transfer between inner sphere and outer vertically eccentric cylinder. Int. J. Heat Mass Transf. 53(23), 5147–5155 (2010)

    Article  MATH  Google Scholar 

  124. Seo, Y.M.; Ha, M.Y.; Park, Y.G.: A numerical study on the three-dimensional natural convection with a cylinder in a long rectangular enclosure. Part I: size effect of a circular cylinder or an elliptical cylinder. Int. J. Heat Mass Transfer 134, 420–436 (2019)

    Article  Google Scholar 

  125. Seo, Y.M., et al.: 2020 Direct numerical simulation and artificial neural network modeling of heat transfer characteristics on natural convection with a sinusoidal cylinder in a long rectangular enclosure. Int. J. Heat Mass Transfer 152, 119564 (2020)

    Article  Google Scholar 

  126. Seo, Y.M.; Ha, M.Y.; Park, Y.G.: A numerical study on the three-dimensional natural convection with a cylinder in a long rectangular enclosure. Part II: inclination angle effect of the elliptical cylinder. Int. J. Heat Mass Transfer 131, 795–806 (2019)

    Article  Google Scholar 

  127. Kaluri, R.S.; Anandalakshmi, R.; Basak, T.: Bejan’s heatline analysis of natural convection in right-angled triangular enclosures: effects of aspect-ratio and thermal boundary conditions. Int. J. Therm. Sci. 49(9), 1576–1592 (2010)

    Article  Google Scholar 

  128. Basak, T.; Anandalakshmi, R.; Gunda, P.: Role of entropy generation during convective thermal processing in right-angled triangular enclosures with various wall heatings. Chem. Eng. Res. Des. 90(11), 1779–1799 (2012)

    Article  Google Scholar 

  129. Basak, T.; Anandalakshmi, R.; Roy, M.: Heatlines based natural convection analysis in tilted isosceles triangular enclosures with linearly heated inclined walls: effect of various orientations. Int. Commun. Heat Mass Transfer 43, 39–45 (2013)

    Article  Google Scholar 

  130. Saha, S.C.; Gu, Y.T.: Natural convection in a triangular enclosure heated from below and non-uniformly cooled from top. Int. J. Heat Mass Transf. 80, 529–538 (2015)

    Article  Google Scholar 

  131. Das, D.; Lukose, L.; Basak, T.: Role of finite element based grids and simulations on evaluation of Nusselt numbers for heatfunctions within square and triangular cavities involving multiple discrete heaters. Int. Commun. Heat Mass Transfer 89, 39–46 (2017)

    Article  Google Scholar 

  132. Das, D.; Lukose, L.; Basak, T.: Role of multiple discrete heaters to minimize entropy generation during natural convection in fluid filled square and triangular enclosures. Int. J. Heat Mass Transf. 127, 1290–1312 (2018)

    Article  Google Scholar 

  133. Anandalakshmi, R.; Kaluri, R.S.; Basak, T.: Heatline based thermal management for natural convection within right-angled porous triangular enclosures with various thermal conditions of walls. Energy 36(8), 4879–4896 (2011)

    Article  Google Scholar 

  134. Bhardwaj, S.; Dalal, A.: Analysis of natural convection heat transfer and entropy generation inside porous right-angled triangular enclosure. Int. J. Heat Mass Transf. 65, 500–513 (2013)

    Article  Google Scholar 

  135. Mansour, M.A.; Ahmed, S.E.: A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect. Eng. Sci. Techol. Int. J. 18(3), 485–495 (2015)

    Google Scholar 

  136. Biswal, P.; Basak, T.: Role of various concave/convex walls exposed to solar heating on entropy generation during natural convection within porous right angled triangular enclosures. Sol. Energy 137, 101–121 (2016)

    Article  Google Scholar 

  137. Izadi, M.: Effects of porous material on transient natural convection heat transfer of nano-fluids inside a triangular chamber. Chin. J. Chem. Eng. 28(5), 1203–1213 (2020)

    Article  Google Scholar 

  138. Izadi, M.; Bastani, B.; Sheremet, M.A.: Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach. Adv. Powder Technol. 31(6), 2493–2504 (2020)

    Article  Google Scholar 

  139. Aminossadati, S.M.; Ghasemi, B.: Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid. Comput. Math. Appl. 61(7), 1739–1753 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  140. Rahman, M.M., et al.: Unsteady natural convection in Al2O3–water nanoliquid filled in isosceles triangular enclosure with sinusoidal thermal boundary condition on bottom wall. Superlattices Microstruct. 67, 181–196 (2014)

    Article  Google Scholar 

  141. Bondareva, N.S., et al.: Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv. Powder Technol. 28(1), 244–255 (2017)

    Article  Google Scholar 

  142. Sheremet, M.A.; Pop, I.: Free convection in a triangular cavity filled with a porous medium saturated by a nanofluid. Int. J. Numer. Meth. Heat Fluid Flow 50(11), 2141–2153 (2015)

  143. Sheremet, M.A.; Pop, I.; Shenoy, A.: Natural convection in a wavy open porous cavity filled with a nanofluid: Tiwari and Das’ nanofluid model. Eur. Phys. J. Plus 131(3), 1–12 (2016)

    Article  Google Scholar 

  144. Sheremet, M.A.; Revnic, C.; Pop, I.: Natural convective heat transfer through two entrapped triangular cavities filled with a nanofluid: Buongiorno’s mathematical model. Int. J. Mech. Sci. 133, 484–494 (2017)

    Article  Google Scholar 

  145. Liu, W., et al.: Natural convection and entropy generation of a nanofluid in two connected inclined triangular enclosures under magnetic field effects. Int. Commun. Heat Mass Transfer 108, 104309 (2019)

    Article  Google Scholar 

  146. Dogonchi, A.; Selimefendigil, F.; Ganji, D.: Magneto-hydrodynamic natural convection of CuO-water nanofluid in complex shaped enclosure considering various nanoparticle shapes. Int. J. Numer. Meth. Heat Fluid Flow 29, 1663–1679 (2019)

  147. Ahmed, S.E., et al.: MHD natural convection from two heating modes in fined triangular enclosures filled with porous media using nanofluids. J. Therm. Anal. Calorim. 139(5), 3133–3149 (2020)

    Article  Google Scholar 

  148. Mahmoudi, A.H.; Pop, I.; Shahi, M.: Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. Int. J. Therm. Sci. 59, 126–140 (2012)

    Article  Google Scholar 

  149. Chowdhury, R.; Parvin, S.; Khan, M.A.H.: Finite element analysis of double-diffusive natural convection in a porous triangular enclosure filled with Al2O3-water nanofluid in presence of heat generation. Heliyon 2(8), e00140 (2016)

    Article  Google Scholar 

  150. Rashad, A.; et al.: Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. J. Heat Transfer 140(7), 1–13 (2018)

  151. Rashidi, A.A.; Kianpour, E.: Investigation of natural convection heat transfer of MHD hybrid nanofluid in a triangular enclosure. J. Comput. Appl. Res. Mech. Eng. (JCARME) 10, 539–549 (2019)

  152. Afrand, M., et al.: Free convection and entropy generation of a nanofluid in a tilted triangular cavity exposed to a magnetic field with sinusoidal wall temperature distribution considering radiation effects. Int. Commun. Heat Mass Transfer 112, 104507 (2020)

    Article  Google Scholar 

  153. Yu, Z.-T., et al.: A parametric study of Prandtl number effects on laminar natural convection heat transfer from a horizontal circular cylinder to its coaxial triangular enclosure. Numer. Heat Transfer, Part A Appl. 58(7), 564–580 (2010)

    Article  Google Scholar 

  154. Yu, Z.-T., et al.: Unsteady natural convection heat transfer from a heated horizontal circular cylinder to its air-filled coaxial triangular enclosure. Int. J. Heat Mass Transf. 54(7), 1563–1571 (2011)

    Article  MATH  Google Scholar 

  155. Selimefendigil, F.; Oztop, H.F.; Chamkha, A.J.: Analysis of mixed convection and entropy generation of nanofluid filled triangular enclosure with a flexible sidewall under the influence of a rotating cylinder. J. Therm. Anal. Calorim. 135(2), 911–923 (2019)

    Article  Google Scholar 

  156. Amrani, A.I.; et al.: Combined natural convection and thermal radiation heat transfer in a triangular enclosure with an inner rectangular body. Defect Diffus. Forum 384, 49–68 (2018)

  157. Arani, A.A.A.; Kazemi, M.: Analysis of fluid flow and heat transfer of nanofluid inside triangular enclosure equipped with rotational obstacle. J. Mech. Sci. Technol. 33(10), 4917–4929 (2019)

    Article  Google Scholar 

  158. Dogonchi, A.; et al.: Simulation of Fe3O4-H2O nanoliquid in a triangular enclosure subjected to Cattaneo–Christov theory of heat conduction. Int. J. Numer. Meth. Heat Fluid Flow 29, 4430–4444 (2019)

Download references

Acknowledgements

The authors would like to thank Babylon University (http://en.uobabylon.edu.iq/) for giving them the opportunity, time and scientific support for completing this work, and the first author is grateful to Al-Mustaqbal University College (https://mustaqbal-college.edu.iq/) for the financial support.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through General Research Project under grant number GRP/31/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejla Mahjoub Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkadhim, A., Abed, I.M. & Mahjoub Said, N. Review of Natural Convection Within Various Shapes of Enclosures. Arab J Sci Eng 46, 11543–11586 (2021). https://doi.org/10.1007/s13369-021-05952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05952-6

Keywords

Navigation