Skip to main content
Log in

Numerical study of unsteady natural convection heat transfer of Newtonian and non-Newtonian fluids in a square enclosure under oscillating heat flux

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents a numerical study on the unsteady natural convective flow of Newtonian and non-Newtonian fluids in a square enclosure. A heat source with oscillating heat flux is located on the bottom wall of the enclosure. The top wall is thermally insulated and the other walls are at a relatively low temperature. The continuity, momentum, and energy equations for a computational domain encompassing the enclosure are solved numerically using the SIMPLE algorithm. The flow and temperature fields and the heat transfer performance are examined for different non-Newtonian fluids and heat source locations. The results are presented for different values of power-law index, Rayleigh number, and fluctuation period. It is found that the flow and temperature fields vary as the oscillating heat flux is changed. The pseudoplastic non-Newtonian fluid \((n < 1)\) is associated with a higher heat transfer, and the dilatant non-Newtonian fluid \((n > 1)\) is associated with a lower heat transfer with respect to the Newtonian fluid. The heat source oscillation period significantly affects the maximum flow temperature in the enclosure. This study provides useful information for the designers of electronic cooling systems using non-Newtonian fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(C_{\text{p}}\) :

Specific heat \(\left( {{\text{J}}\,{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

\(g\) :

Gravitational acceleration \(\left( {\text{m}\,\text{s}^{ - 2} } \right)\)

\(h\) :

Convection heat transfer coefficient \(\left( {{\text{W}}\,{\text{m}}^{ - 2} \,{\text{K}}^{ - 1} } \right)\)

\(k\) :

Thermal conductivity \(\left( {{\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right)\)

\(\kappa\) :

Consistency index \(\left( {{\text{Pa}}\,{\text{s}}^{n} } \right)\)

\(L\) :

Enclosure length (\(\text{m}\))

\(n\) :

Power-law index

\(Nu_{\text{s}}\) :

Local Nusselt number on the heat source, \(1/\theta_{\text{s}} (X)\)

\(Nu_{\text{m}}\) :

Average Nusselt number \(1/W_{\text{s}} \int_{{X_{\text{s}} - 0.5W_{\text{s}} }}^{{X_{\text{s}} + 0.5W_{\text{s}} }} {Nu_{\text{s}} (X){\text{d}}X}\)

\(p\) :

Fluid pressure \(\left( {\text{Pa}} \right)\)

\(\bar{p}\) :

Modified pressure \((p + \rho_{\text{c}} gy)\)

\(P\) :

Dimensionless pressure \((\bar{p}L^{2} /\rho \alpha^{2} )\)

\(Pr\) :

Prandtl number \((\nu /\alpha )\)

\(q^{{\prime \prime }}\) :

Oscillating heat flux \(\left( {\text{W}\,\text{m}^{ - 2} } \right)\)

\(q_{0}^{{\prime \prime }}\) :

Amplitude of oscillating heat flux \(\left( {\text{W}\,\text{m}^{ - 2} } \right)\)

\(Ra\) :

Rayleigh number \((g\beta L^{3} \Delta T/\nu \alpha )\)

t :

Time (s)

\(t_{\text{p}}\) :

Oscillation period \(\left( \text{s} \right)\)

T :

Temperature (K)

\(u,v\) :

Velocity components in x-, y-directions \(\left( {\text{m}\,\text{s}^{{ - \text{1}}} } \right)\)

\(U,V\) :

Dimensionless velocity components \((uL/\alpha ,^{{}} vL/\alpha )\)

w S :

Heat source length \(\text{(m)}\)

W s :

Dimensionless heat source length \((w_{\text{s}} /L)\)

\(x_{\text{s}}\) :

Distance of the heat source from the left wall \((\text{m})\)

\(X_{\text{s}}\) :

Dimensionless distance of the heat source from the left wall \((x_{\text{s}} /L)\)

\(x,y\) :

Cartesian coordinates \(\text{(m)}\)

\(X,Y\) :

Dimensionless coordinates \((x/L,^{{}} y/L)\)

\(\alpha\) :

Thermal diffusivity \(\left( {\text{m}^{2} \,\text{s}^{ - 1} } \right)\)

\(\beta\) :

Thermal expansion coefficient \(\left( {\text{K}^{{ - \text{1}}} } \right)\)

\(\Delta T\) :

Temperature difference \((q^{\prime\prime}_{0} L/k)\)

\(\mu\) :

Dynamic viscosity \(\left( {\text{N}\,\text{s}\,\text{m}^{{ - \text{2}}} } \right)\)

\(\mu_{\text{a}}\) :

Apparent viscosity \(\left( {\text{N}\,\text{s}\,\text{m}^{{ - \text{2}}} } \right)\)

\(\mu_{\text{a}}^{{\prime }}\) :

Dimensionless apparent viscosity

\(\nu\) :

Kinematic viscosity \(\left( {\text{m}^{2} \,\text{s}^{ - 1} } \right)\)

\(\theta\) :

Dimensionless temperature \(((T - T_{\text{c}} )/\Delta T)\)

\(\theta_{\hbox{max} }\) :

Maximum heat source temperature along its length

\((\theta_{\hbox{max} } )_{\hbox{max} }\) :

The highest value of \(\theta_{\hbox{max} }\) with respect to time

\(\rho\) :

Density \(\left( {\text{kg}\,\text{m}^{{ - \text{3}}} } \right)\)

\(\tau\) :

Time in dimensionless form \((\alpha t/L^{2} )\)

\(\tau_{\text{p}}\) :

Oscillation period in dimensionless form \((\alpha t_{\text{p}} /L^{2} )\)

\(\psi_{\hbox{max} }\) :

Maximum stream function

\({\text{c}}\) :

Cold wall

\({\text{nf}}\) :

Newtonian fluid

\({\text{nnf}}\) :

Non-Newtonian fluid

\(s\) :

Heat source

i, j :

Index

References

  1. Ostrach S. Natural convection in enclosures. J Heat Transf. 1988;110:1175–90.

    Article  CAS  Google Scholar 

  2. Esfe MH, Saedodin S, Malekshah EH, Babaie A, Rostamian H. Mixed convection inside lid-driven cavities filled with nanofluids. J Therm Anal Calorim. 2018;135:813–59.

    Article  Google Scholar 

  3. Lage JL, Bejan A. The resonance of natural convection in an enclosure heated periodically from the side. Int J Heat Mass Transf. 1993;36:2027–38.

    Article  CAS  Google Scholar 

  4. Roslan R, Saleh H, Hashim I, Bataineh AS. Natural convection in an enclosure containing a sinusoidally heated cylindrical source. Int J Heat Mass Transf. 2014;70:119–27. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.011.

    Article  Google Scholar 

  5. Wang T, Wang Z, Xi G, Huang Z. Periodic unsteady mixed convection in square enclosure induced by inner rotating circular cylinder with time-periodic pulsating temperature. Int J Heat Mass Transf. 2017;111:1250–9.

    Article  Google Scholar 

  6. Kalidasan K, Velkennedy R, Kanna PR. Laminar natural convection inside the open, forward-facing stepped rectangular enclosure with a partition and time-variant temperature on the stepped top wall. Int Commun Heat Mass Transf. 2015;67:124–36.

    Article  Google Scholar 

  7. Cruchaga MA, Celentano DJ, Lewis RW. Modelling of twin-roll strip casting processes. Int J Numer Method Biomed Eng. 2003;19:623–35.

    Google Scholar 

  8. Samanta D, Zabaras N. Numerical study of macrosegregation in aluminum alloys solidifying on uneven surfaces. Int J Heat Mass Transf. 2005;48:4541–56.

    Article  CAS  Google Scholar 

  9. Moraga NO, Ramírez SDC, Godoy MJ, Ticchione PD. Study of convective non-Newtonian alloy solidification in molds by the PSIMPLER/finite-volume method. Numer Heat Transf Part A Appl. 2010;57:936–53.

    Article  CAS  Google Scholar 

  10. Wu G-H, Wu BY, Ju S-H, Wu CC. Non-isothermal flow of a polymeric fluid past a submerged circular cylinder. Int J Heat Mass Transf. 2003;46:4733–9.

    Article  CAS  Google Scholar 

  11. Pham QT. Modelling heat and mass transfer in frozen foods: a review. Int J Refrig. 2006;29:876–88.

    Article  CAS  Google Scholar 

  12. Campañone LA, Salvadori VO, Mascheroni RH. Food freezing with simultaneous surface dehydration: approximate prediction of weight loss during freezing and storage. Int J Heat Mass Transf. 2005;48:1195–204.

    Article  Google Scholar 

  13. Moraga NO, Medina EE. Conjugate forced convection and heat conduction with freezing of water content in a plate shaped food. Int J Heat Mass Transf. 2000;43:53–67.

    Article  Google Scholar 

  14. Kelder JDH, Ptasinski KJ, Kerkhof P. Power-law foods in continuous coiled sterilisers. Chem Eng Sci. 2002;57:4605–15.

    Article  CAS  Google Scholar 

  15. Shahsavand A. Simulation of a continuous thermal sterilization process in the presence of solid particles. Sci Iran. 2009;16:29.

    CAS  Google Scholar 

  16. Chang PY, Chou FC, Tung CW. Heat transfer mechanism for Newtonian and non-Newtonian fluids in 2: 1 rectangular ducts. Int J Heat Mass Transf. 1998;41:3841–56.

    Article  CAS  Google Scholar 

  17. Lorenzini G, Biserni C. Numerical investigation on mixed convection in a non-Newtonian fluid inside a vertical duct. Int J Therm Sci. 2004;43:1153–60.

    Article  Google Scholar 

  18. Amani M, Amani P, Bahiraei M, Wongwises S. Prediction of hydrothermal behavior of a non-Newtonian nanofluid in a square channel by modeling of thermophysical properties using neural network. J Therm Anal Calorim. 2018;135:1–10. https://doi.org/10.1007/s10973-018-7303-y.

    Article  CAS  Google Scholar 

  19. Chhabra RP. Bubbles, drops, and particles in non-Newtonian fluids. 2nd ed. Taylor and Francise: CRC Press; 2007.

    Google Scholar 

  20. Chhabra RP, Richardson JF. Non-Newtonian flow in the process industries: fundamentals and engineering applications. 1st ed. Oxford: Butterworth-Heinemann; 1999.

    Google Scholar 

  21. Lamsaadi M, Naimi M, Hasnaoui M. Natural convection heat transfer in shallow horizontal rectangular enclosures uniformly heated from the side and filled with non-Newtonian power law fluids. Energy Convers Manag. 2006;47:2535–51.

    Article  Google Scholar 

  22. Turan O, Chakraborty N, Poole RJ. Laminar natural convection of Bingham fluids in a square enclosure with differentially heated side walls. J Nonnewton Fluid Mech. 2010;165:901–13.

    Article  CAS  Google Scholar 

  23. Vinogradov I, Khezzar L, Siginer D. Heat transfer of non-Newtonian dilatant power law fluids in square and rectangular cavities. J Appl Fluid Mech. 2011;4:37–42.

    Google Scholar 

  24. Matin MH, Pop I, Khanchezar S. Natural convection of power-law fluid between two-square eccentric duct annuli. J Nonnewton Fluid Mech. 2013;197:11–23.

    Article  Google Scholar 

  25. Jahanbakhshi A, Nadooshan AA, Bayareh M. Magnetic field effects on natural convection flow of a non-Newtonian fluid in an L-shaped enclosure. J Therm Anal Calorim. 2018;133:1–10.

    Article  Google Scholar 

  26. Kim GB, Hyun JM, Kwak HS. Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure. Int J Heat Mass Transf. 2003;46:3605–17.

    Article  Google Scholar 

  27. Lemus-Mondaca RA, Moraga NO, Riquelme J. Unsteady 2D conjugate natural non-Newtonian convection with non-Newtonian liquid sterilization in square cavity. Int J Heat Mass Transf. 2013;61:73–81.

    Article  CAS  Google Scholar 

  28. Guha A, Pradhan K. Natural convection of non-Newtonian power-law fluids on a horizontal plate. Int J Heat Mass Transf. 2014;70:930–8.

    Article  Google Scholar 

  29. Kefayati GHR. Simulation of non-Newtonian molten polymer on natural convection in a sinusoidal heated cavity using FDLBM. J Mol Liq. 2014;195:165–74.

    Article  CAS  Google Scholar 

  30. Zhang H, Xu T, Zhang X, Zheng L, Wang Y, Zong Y. Numerical study on the skin friction and heat transfer coefficient of non-Newtonian power law fluid in boundary layer. Procedia Eng. 2015;121:824–9.

    Article  Google Scholar 

  31. Moraga NO, Parada GP, Vasco DA. Power law non-Newtonian fluid unsteady conjugate three-dimensional natural convection inside a vessel driven by surrounding air thermal convection in a cavity. Int J Therm Sci. 2016;107:247–58.

    Article  Google Scholar 

  32. Crespí-Llorens D, Vicente P, Viedma A. Experimental study of heat transfer to non-Newtonian fluids inside a scraped surface heat exchanger using a generalization method. Int J Heat Mass Transf. 2018;118:75–87.

    Article  Google Scholar 

  33. Ghasemi B. Mixed convection in a rectangular cavity with a pulsating heated electronic component. Numer Heat Transf Part A. 2005;47:505–21.

    Article  Google Scholar 

  34. Patankar S. Numerical heat transfer and fluid flow. Boca Raton: CRC Press; 1980.

    Google Scholar 

  35. Turan O, Sachdeva A, Chakraborty N, Poole RJ. Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J Nonnewton Fluid Mech. 2011;166:1049–63.

    Article  CAS  Google Scholar 

  36. Antohe BV, Lage JL. Experimental investigation on pulsating horizontal heating of a water-filled enclosure. J Heat Transf. 1996;118:889–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Ghasemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishkar, I., Ghasemi, B., Raisi, A. et al. Numerical study of unsteady natural convection heat transfer of Newtonian and non-Newtonian fluids in a square enclosure under oscillating heat flux. J Therm Anal Calorim 138, 1697–1710 (2019). https://doi.org/10.1007/s10973-019-08253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08253-1

Keywords

Navigation