Skip to main content

Advertisement

Log in

Inorganic nanocrystal-carbon composite derived from cross-linked gallic acid derivative of polyphosphazenes for the efficient oxygen evolution reaction

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The development of heteroatoms doped inorganic nanocrystal-carbon composites (INCCs) has attained a great focus for energy applications (energy production and energy storage). A precise approach to fabricate the INCCs with homogenous distribution of the heteroatoms with an appropriate distribution of metal atoms remains a challenge for material scientists. Herein, we proposed a facile two-step route to synthesize INCC with doping of metal (α-Fe2O3) and non-metals (N, P, O) using hydrogel formed by treating hexachlorocyclotriphosphazene (HCCP) and 3, 4, 5-trihydroxy benzoic acid (Gallic acid). Metal oxide was doped using an extrinsic doping approach by varying its content and non-metallic doping by an intrinsic doping approach. We have fabricated four different samples (INCC-0.5%, INCC-1.0%, INCC-1.5%, and INCC-2.0%), which exhibit the uniform distribution of the N, P, O, and α-Fe2O3 in the carbon architecture. These composite materials were applied as anode material in water oxidation catalysis (WOC); INCC-1.5% electro-catalyst confirmed by cyclic voltammetry (CV) with a noticeable catholic peak 0.85 V vs RHE and maximal current density 1.5 mA.cm−2. It also delivers better methanol tolerance and elongated stability than RuO2; this superior performance was attributed due to the homogenous distribution of the α-Fe2O3 causing in promotion of adsorption of O2 initially and a greater surface area of 1352.8 m2/g with hierarchical pore size distribution resulting higher rate of ion transportation and mass-flux.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No relevant data is present for this study.

References

  1. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731

    Article  CAS  Google Scholar 

  2. Yang J et al (2022) Green preparation and supercapacitive behaviors of calcium carbide derived porous carbon based on solvent-free mechanochemical route. J Energy Storage 51:104473

    Article  Google Scholar 

  3. Ge R, Chen L (2022) Ultra-small RuO2 nanoparticles supported on carbon cloth as a high-performance pseudocapacitive electrode. Adv Compos Hybrid Mater 5:696–703

    Article  CAS  Google Scholar 

  4. Parent AR, Crabtree RH, Brudvig GW (2013) Comparison of primary oxidants for water-oxidation catalysis. Chem Soc Rev 42(6):2247–2252

    Article  CAS  Google Scholar 

  5. Wang Y et al (2021) Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density. Appl Catal B 286:119881

    Article  CAS  Google Scholar 

  6. Dong C et al (2018) Eutectic-derived mesoporous Ni-Fe-O nanowire network catalyzing oxygen evolution and overall water splitting. Adv Energy Mater 8(5):1701347

    Article  Google Scholar 

  7. Deng X, Tüysüz H (2014) Cobalt-oxide-based materials as water oxidation catalyst: recent progress and challenges. ACS Catal 4(10):3701–3714

    Article  CAS  Google Scholar 

  8. Yagi M, Kaneko M (2001) Molecular catalysts for water oxidation. Chem Rev 101(1):21–36

    Article  CAS  Google Scholar 

  9. Yang X, Baik M-H (2008) The Mechanism of Water Oxidation Catalysis Promoted by [tpyRu (IV) O] 2 L3+: a Computational Study. J Am Chem Soc 130(48):16231–16240

    Article  CAS  Google Scholar 

  10. Deng F, Jiang J, Sirés I (2022) State-of-the-art review and bibliometric analysis on electro-Fenton process. Carbon Letters, 1–18

  11. Li F et al. (2022) Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Letters, 1–11.

  12. Wang J et al. (2022) Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Letters 1–14.

  13. Yang M et al (2022) Correction to: Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Letters, 1–1.

  14. Mayes RT et al. (2015) Metal-carbon composites and methods for their production. Google Patents.

  15. Miao Z et al (2022) New flame retardant epoxy resins based on cyclophosphazene-derived curing agents. Chin Chem Lett 33(8):4026–4032

    Article  CAS  Google Scholar 

  16. Ueno T et al (2009) Highly thermal conductive metal/carbon composites by pulsed electric current sintering. Synth Met 159(21–22):2170–2172

    Article  CAS  Google Scholar 

  17. Liang J et al. (2022) Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers. Nano Research 1–10

  18. Datta K et al (2008) Synthesis of agarose-metal/semiconductor nanoparticles having superior bacteriocidal activity and their simple conversion to metal-carbon composites. J Chem Sci 120(6):579–586

    Article  CAS  Google Scholar 

  19. Wei X et al (2022) Design of Functional Carbon Composite Materials for Energy Conversion and Storage. Chem Res Chin Univ 38:677–687

    Article  CAS  Google Scholar 

  20. Vissurkhanova YA et al. (2022) Mono-and bimetallic silver-containing nitrogen-doped carbon composites and their electrocatalytic activity. (23): 1–10.

  21. Song L et al (2022) Metal-organic aerogel derived hierarchical porous metal-carbon nanocomposites as efficient bifunctional electrocatalysts for overall water splitting. J Colloid Interface Sci 621:398–405

    Article  CAS  Google Scholar 

  22. Liu D et al (2022) Graphitic Carbon Nitride for Gaseous Mercury Emission Control: A Review. Energy Fuels 36(8):4297–4313

    Article  CAS  Google Scholar 

  23. Rao Q et al (2022) Boron-Nitrogen-Co-Doping nanocarbons to create rich electroactive defects toward simultaneous sensing hydroquinone and catechol. Electrochim Acta 402:139427

    Article  CAS  Google Scholar 

  24. Wang J, Han WQ (2022) A review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv Func Mater 32(2):2107166

    Article  CAS  Google Scholar 

  25. Liu M et al (2022) Synchronous-ultrahigh conductive-reactive N-atoms doping strategy of carbon nanofibers networks for high-performance flexible energy storage. Energy Storage Mater 44:250–262

    Article  Google Scholar 

  26. Liu B et al (2022) Experimental and molecular perspective on VOCs adsorption and separation: Study of the surface heterogeneity and oxygen functionalizing. Chem Eng J 435:135069

    Article  CAS  Google Scholar 

  27. Nichols F et al (2022) Platinum-complexed phosphorous-doped carbon nitride for electrocatalytic hydrogen evolution. J Mater Chem A 10(11):5962–5970

    Article  CAS  Google Scholar 

  28. Yang M et al (2022) Hierarchical porous nitrogen, oxygen, and phosphorus ternary doped hollow biomass carbon spheres for high-speed and long-life potassium storage. Carbon Energy 4(1):45–59

    Article  CAS  Google Scholar 

  29. Allcock H (1972) Recent advances in phosphazene (phosphonitrilic) chemistry. Chem Rev 72(4):315–356

    Article  CAS  Google Scholar 

  30. Allcock H, Kugel R (1966) Phosphonitrilic compounds. VII. High molecular weight poly (diaminophosphazenes). Inorg Chem 5(10):1716–1718

    Article  CAS  Google Scholar 

  31. Allcock HR (2007) New approaches to hybrid polymers that contain phosphazene rings. J Inorg Organomet Polym Mater 17(2):349–359

    Article  CAS  Google Scholar 

  32. Allcock HR et al (1996) “Living” cationic polymerization of phosphoranimines as an ambient temperature route to polyphosphazenes with controlled molecular weights. Macromolecules 29(24):7740–7747

    Article  CAS  Google Scholar 

  33. Allcock HR, Kugel R (1965) Synthesis of high polymeric alkoxy-and aryloxyphosphonitriles. J Am Chem Soc 87(18):4216–4217

    Article  CAS  Google Scholar 

  34. Allcock HR et al (1997) Ambient-temperature direct synthesis of poly (organophosphazenes) via the “living” cationic polymerization of organo-substituted phosphoranimines. Macromolecules 30(1):50–56

    Article  CAS  Google Scholar 

  35. Allcock HR et al (2000) Synthesis and characterization of phosphazene di-and triblock copolymers via the controlled cationic, ambient temperature polymerization of phosphoranimines. Macromolecules 33(11):3999–4007

    Article  CAS  Google Scholar 

  36. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094

    Article  CAS  Google Scholar 

  37. Abbas Y et al (2020) Substantial role of nitrogen and sulfur in quaternary-atom-doped multishelled carbon nanospheres for the oxygen evolution reaction. ACS Sustain Chem Eng 8(10):4284–4291

    Article  CAS  Google Scholar 

  38. Abbas Y et al (2019) Morphology control of novel cross-linked ferrocenedimethanol derivative cyclophosphazenes: From microspheres to nanotubes and their enhanced physicochemical performances. J Phys Chem B 123(18):4148–4156

    Article  CAS  Google Scholar 

  39. Ali S et al (2017) High-throughput synthesis of cross-linked poly (cyclotriphosphazene-co-bis (aminomethyl) ferrocene) microspheres and their performance as a superparamagnetic, electrochemical, fluorescent and adsorbent material. Chem Eng J 315:448–458

    Article  CAS  Google Scholar 

  40. Ali Z, Basharat M, Wu Z (2021) A Review on the morphologically controlled synthesis of polyphosphazenes for electrochemical applications. ChemElectroChem 8:759–782

    Article  CAS  Google Scholar 

  41. Basharat M et al (2019) Unusual excitation wavelength tunable multiple fluorescence from organocyclo-phosphazene microspheres: Crosslinked structure-property relationship. Polymer 185:121942

    Article  CAS  Google Scholar 

  42. Liu W et al (2018) Polyphosphazene-derived heteroatoms-doped carbon materials for supercapacitor electrodes. Carbon 129:420–427

    Article  CAS  Google Scholar 

  43. Qiu M et al (2020) Heteroatom-doped ultrahigh specific area carbons from hybrid polymers with promising capacitive performance. J Power Sources 478:228761

    Article  CAS  Google Scholar 

  44. Zou W et al (2020) Structurally Designed Heterochain Polymer Derived Porous Carbons with High Surface Area for High-performance Supercapacitors. Appl Surf Sci 530:147296

    Article  CAS  Google Scholar 

  45. Bai S et al (2021) Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. NPJ 2D Mater Appl 5(1):1–15

    Article  Google Scholar 

  46. Jiang J et al (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24

    Article  Google Scholar 

  47. Jiang J et al (2022) Carbonitride MXene Ti3CN (OH) x@ MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution. Nano Res 15(12):1–8

    CAS  Google Scholar 

  48. Jiang J et al (2014) Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221

    Article  CAS  Google Scholar 

  49. Zou J et al (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663

    Article  CAS  Google Scholar 

  50. Rada S, Dehelean A, Culea E (2011) FTIR, Raman, and UV-Vis spectroscopic and DFT investigations of the structure of iron–lead–tellurate glasses. J Mol Model 17(8):2103–2111

    Article  CAS  Google Scholar 

  51. Lassoued A et al (2017) Control of the shape and size of iron oxide (a-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys 7:3007–3015

    Article  Google Scholar 

  52. Jorio A, Souza Filho AG (2016) Raman studies of carbon nanostructures. Annu Rev Mater Res 46(1):357–382

    Article  CAS  Google Scholar 

  53. Guo Y et al (2020) Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chem Rev 120(15):7642–7707

    Article  CAS  Google Scholar 

  54. Tao R et al (2022) Ionothermal Synthesis of Carbon/TiO2 Nanocomposite for Supercapacitors. ChemNanoMat 8(4):e202200075

    Article  CAS  Google Scholar 

  55. Tao R et al (2022) Insight into the fast-rechargeability of a novel Mo1.5W1.5Nb14O44 anode material for high-performance Lithium-Ion batteries. Adv Energy Mater 12(36):2270151

    Article  Google Scholar 

  56. Li L et al (2017) Unraveling oxygen evolution reaction on carbon-based electrocatalysts: effect of oxygen doping on adsorption of oxygenated intermediates. ACS Energy Lett 2(2):294–300

    Article  CAS  Google Scholar 

  57. Zheng Y, Jiao Y, Qiao SZ (2015) Engineering of carbon-based electrocatalysts for emerging energy conversion: from fundamentality to functionality. Adv Mater 27(36):5372–5378

    Article  CAS  Google Scholar 

  58. Chen D et al (2020) Nitrogen-Doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and zn-air batteries. Appl Catal B 268:118729

    Article  CAS  Google Scholar 

  59. Chen K et al (2015) Heteroatom-doped mesoporous carbon nanofibers based on highly cross-linked hybrid polymeric nanofibers: Facile synthesis and application in an electrochemical supercapacitor. Mater Chem Phys 164:85–90

    Article  CAS  Google Scholar 

  60. Chen K et al (2016) Heteroatom–doped hollow carbon microspheres based on amphiphilic supramolecular vesicles and highly crosslinked polyphosphazene for high performance supercapacitor electrode materials. Electrochim Acta 222:543–550

    Article  CAS  Google Scholar 

  61. Guo Y et al (2018) Co2P–CoN double active centers confined in N-doped carbon nanotube: heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn–air batteries driven water splitting. Adv Func Mater 28(51):1805641

    Article  Google Scholar 

  62. Mamtani K et al (2018) Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media. Appl Catal B 220:88–97

    Article  CAS  Google Scholar 

  63. Liu Z et al (2020) Phosphorous-Doped Graphite Layers with Outstanding Electrocatalytic Activities for the Oxygen and Hydrogen Evolution Reactions in Water Electrolysis. Adv Func Mater 30(12):1910741

    Article  CAS  Google Scholar 

  64. Suryanto BH et al (2019) Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat Commun 10(1):1–10

    Article  Google Scholar 

  65. Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  66. Inoue Y (2010) Effects of Metal-Ion Doping, Removal and Exchange on Photocatalytic Activity of Metal Oxides and Nitrides for Overall Water Splitting, in On Solar Hydrogen & Nanotechnology (book section). Ch-18: 559–588

  67. Poaty LT, M’Passi-Mabiala B, Gebauer R (2020) The oxygen evolution reaction in hematite-Carbon nanotube composites: Insights from density functional theory. Comput Condens Matter 24:e00496

    Article  Google Scholar 

  68. Zhang Q et al (2018) In-situ growth of ultrathin Co-MOF nanosheets on α-Fe2O3 hematite nanorods for efficient PEC water oxidation. Sol Energy 171:388–396

    Article  CAS  Google Scholar 

  69. Zhang L-Y et al (2022) The Boosting electrocatalytic Oer and 4-Nitrophenol Oxidation over bimetallic PN conjunction: experiments and dft calculations. SSRN Electron J 524:4225644

    Google Scholar 

  70. Bazri B et al (2019) RGO-α-Fe2O3/β-FeOOH ternary heterostructure with urchin-like morphology for efficient oxygen evolution reaction. J Electroanal Chem 843:1–11

    Article  CAS  Google Scholar 

  71. Lin Y et al (2022) Synergistic Effect of Ni2+ and Fe3+ of Bimetallic Oxyhydroxide NiFeOOH as OER Cocatalyst for Fe2O3 Photoanode with Enhanced Photoelectrochemical Water Splitting. Energy Fuels 36(5):2890–2900

    Article  CAS  Google Scholar 

  72. Chuong ND et al (2018) Hierarchical Heterostructures of Ultrasmall Fe2O3-Encapsulated MoS2/N-Graphene as an Effective Catalyst for Oxygen Reduction Reaction. ACS Appl Mater Interfaces 10(29):24523–24532

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was fully funded by the National Science Foundation (NSF) of China and the Chinese Government Scholarship (CSC) under (Project No. 51773010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanpeng Wu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Mushtaq, M.A., Abbas, Y. et al. Inorganic nanocrystal-carbon composite derived from cross-linked gallic acid derivative of polyphosphazenes for the efficient oxygen evolution reaction. Carbon Lett. 33, 737–749 (2023). https://doi.org/10.1007/s42823-022-00455-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00455-2

Keywords

Navigation