Skip to main content
Log in

Performance Comparison of PEM Fuel Cell with Enhanced Cross-Flow Split Serpentine and Single Serpentine Flow Field Designs

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study is aimed at demonstrating the efficacy of enhanced cross-flow split serpentine flow field (ECSSFF) over the single serpentine flow field (SSFF) for a polymer electrolyte membrane fuel cell of 55 cm2 active area using three-dimensional, multiphase, full-scale CFD simulations. For the present study, pure air and hydrogen are used as reactants on cathode and anode side, respectively. The effect of rib width-to-channel width ratio on the cell performance for the two flow field designs is studied. The power output of the three-channeled ECSSFF is studied and compared with the performance of SSFF at different operating temperatures and pressures. The performance displayed by ECSSFF design is on par with that of SSFF design with almost 30 times lesser pressure drop. ECSSFF has exhibited superior performance in terms of offering high currents and low pressure drops compared to SSFF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

BCGSTAB:

Bi-conjugate gradient stabilize method

BP:

Bipolar plate

CC:

Current collectors

CL:

Catalyst layer

CW:

Channel width

ECSSFF:

Enhanced cross-flow split serpentine flow field

GDL:

Gas diffusion layer

GFC:

Gas flow channel

LBM:

Lattice–Boltzmann method

MEA:

Membrane electrode assembly

MPL:

Membrane porous layer

PEM:

Proton exchange membrane

PEMFC:

Proton exchange membrane fuel cell

RH:

Relative humidity

RW:

Rib width

SSFF:

Single serpentine flow field

TSFF:

Triple serpentine flow field

References

  1. Alaswad, A.; Baroutaji, A.; Achour, H.; Carton, J.; Al Makky, A.; Olabi, A.G.: Developments in fuel cell technologies in the transport sector. Int. J. Hydrog. Energy 41, 16499–16508 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.164

    Article  Google Scholar 

  2. Grigoriev, S.A.; Kalinnikov, A.A.; Kuleshov, N.V.; Millet, P.: Numerical optimization of bipolar plates and gas diffusion electrodes for PBI-based PEM fuel cells. Int. J. Hydrog. Energy 38, 8557–8567 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.021

    Article  Google Scholar 

  3. Rostami, L.; Nejad, P.M.G.; Vatani, A.: A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells. Energy 97, 400–410 (2016). https://doi.org/10.1016/j.energy.2015.10.132

    Article  Google Scholar 

  4. Tiss, F.; Chouikh, R.; Guizani, A.: A numerical investigation of the effects of membrane swelling in polymer electrolyte fuel cells. Energy Convers. Manag. 67, 318–324 (2013). https://doi.org/10.1016/j.enconman.2012.12.006

    Article  Google Scholar 

  5. Kerkoub, Y.; Benzaoui, A.; Haddad, F.; Ziari, Y.K.: Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell. Energy Convers. Manag. 174, 260–275 (2018). https://doi.org/10.1016/j.enconman.2018.08.041

    Article  Google Scholar 

  6. Ghanbarian, A.; Kermani, M.J.; Scholta, J.; Abdollahzadeh, M.: Polymer electrolyte membrane fuel cell flow field design criteria—application to parallel serpentine flow patterns. Energy Convers. Manag. 166, 281–296 (2018). https://doi.org/10.1016/j.enconman.2018.04.018

    Article  Google Scholar 

  7. Akbari, M.H.; Rismanchi, B.: Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance. Renew. Energy 33, 1775–1783 (2008). https://doi.org/10.1016/j.renene.2007.10.009

    Article  Google Scholar 

  8. Al-Baghdadi, M.A.R.S.; Al-Janabi, H.A.K.S.: Parametric and optimization study of a PEM fuel cell performance using three-dimensional computational fluid dynamics model. Renew. Energy 32, 1077–1101 (2007). https://doi.org/10.1016/j.renene.2006.04.018

    Article  MATH  Google Scholar 

  9. Cooper, N.J.; Santamaria, A.D.; Becton, M.K.; Park, J.W.: Investigation of the performance improvement in decreasing aspect ratio interdigitated flow field PEMFCs. Energy Convers. Manag. 136, 307–317 (2017). https://doi.org/10.1016/j.enconman.2017.01.005

    Article  Google Scholar 

  10. Zehtabiyan-Rezaie, N.; Arefian, A.; Kermani, M.J.; Noughabi, A.K.; Abdollahzadeh, M.: Effect of flow field with converging and diverging channels on proton exchange membrane fuel cell performance. Energy Convers. Manag. 152, 31–44 (2017). https://doi.org/10.1016/j.enconman.2017.09.009

    Article  Google Scholar 

  11. Molaeimanesh, G.R.; Shojaeefard, M.H.; Moqaddari, M.R.: Effects of electrode compression on the water droplet removal from proton exchange membrane fuel cells. Korean J. Chem. Eng. 36, 136–145 (2019). https://doi.org/10.1007/s11814-018-0157-y

    Article  Google Scholar 

  12. Lü, W.; Liu, Z.; Wang, C.; Mao, Z.; Zhang, M.: Proton exchange membrane fuel cell with humidifying zone. Chin. J. Chem. Eng. 18, 856–862 (2010). https://doi.org/10.1016/S1004-9541(09)60139-7

    Article  Google Scholar 

  13. Barati, S.; Ghazi, M.M.; Khoshandam, B.: Study of effective parameters for the polarization characterization of PEMFCs sensitivity analysis and numerical simulation. Korean J. Chem. Eng. 36, 146–156 (2019). https://doi.org/10.1007/s11814-018-0178-6

    Article  Google Scholar 

  14. Levitas, V.I.; Roy, A.M.; Preston, D.L.: Multiple twinning and variant-variant transformations in martensite: phase-field approach. Phys. Rev. B 88, 054113 (2013). https://doi.org/10.1103/physrevb.88.054113

    Article  Google Scholar 

  15. Levitas, V.I.; Roy, A.M.: Multiphase phase field theory for temperature- and stress-induced phase transformations. Phys. Rev. B 91, 174109 (2015). https://doi.org/10.1103/physrevb.91.174109

    Article  Google Scholar 

  16. Levitas, V.I.; Roy, A.M.: Multiphase phase field theory for temperature-induced phase transformations: formulation and application to interfacial phases. Acta Mater. 105, 244–257 (2016). https://doi.org/10.1016/j.actamat.2015.12.013

    Article  Google Scholar 

  17. Park, S.; Popov, B.N.: Effect of membrane-electrode-assembly configuration on proton exchange membrane fuel cell performance. Korean J. Chem. Eng. 31, 1384–1388 (2014). https://doi.org/10.1007/s11814-014-0037-z

    Article  Google Scholar 

  18. Badduri, S.R.; Srinivasulu, G.N.; Rao, S.S.: Influence of bio-inspired flow channel designs on the performance of a PEM fuel cell. Chin. J. Chem. Eng. 28, 824–831 (2019). https://doi.org/10.1016/j.cjche.2019.07.010

    Article  Google Scholar 

  19. Arvay, A.; French, J.; Wang, J.C.; Peng, X.H.; Kannan, A.M.: Nature inspired flow field designs for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 38, 3717–3726 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.149

    Article  Google Scholar 

  20. Suresh, P.V.; Jayanti, S.; Deshpande, A.P.; Haridoss, P.: An improved serpentine flow field with enhanced cross-flow for fuel cell applications. Int. J. Hydrog. Energy 36, 6067–6072 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.147

    Article  Google Scholar 

  21. Abdulla, S.; Patnaikuni, V.S.: Detailed analysis of polymer electrolyte membrane fuel cell with enhanced cross-flow split serpentine flow field design. Int. J. Energy Res. 43, 2806–2820 (2019). https://doi.org/10.1002/er.4368

    Article  Google Scholar 

  22. Abdulla, S.; Patnaikuni, V.S.: Performance evaluation of enhanced cross flow split serpentine flow field design for higher active area PEM fuel cells. Int. J. Hydrog. Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.01.199

    Article  Google Scholar 

  23. Arvay, A.; Ahmed, A.; Peng, X.H.; Kannan, A.M.: Convergence criteria establishment for 3D simulation of proton exchange membrane fuel cell. Int. J. Hydrog. Energy 37, 2482–2489 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.005

    Article  Google Scholar 

  24. Zinko, T.; Pianko-Oprych, P.; Jaworski, Z.: Three-dimensional computational fluid dynamics modelling of a proton exchange membrane fuel cell with a serpentine micro-channel design. Chem. Process. Eng. 39, 143–154 (2018). https://doi.org/10.24425/119105

    Article  Google Scholar 

  25. Ansys Inc: ANSYS Fluent Fuel Cell Modules Manual, Release 15.0. 15317, 2019 (2013)

  26. Ozden, E.; Tari, I.: Proton exchange membrane fuel cell degradation: a parametric analysis using computational fluid dynamics. J. Power Sources 304, 64–73 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.042

    Article  Google Scholar 

  27. Chowdhury, M.Z.; Timurkutluk, B.: Transport phenomena of convergent and divergent serpentine flow fields for PEMFC. Energy 161, 104–117 (2018). https://doi.org/10.1016/j.energy.2018.07.143

    Article  Google Scholar 

  28. Limjeerajarus, N.; Charoen-amornkitt, P.: Effect of different flow field designs and number of channels on performance of a small PEFC. Int. J. Hydrog. Energy 40, 7144–7158 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.007

    Article  Google Scholar 

  29. Chowdhury, M.Z.; Genc, O.; Toros, S.: Numerical optimization of channel to land width ratio for PEM fuel cell. Int. J. Hydrog. Energy 43, 10798–10809 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.149

    Article  Google Scholar 

  30. Carcadea, E.; Varlam, M.; Ingham, D.B.; Ismail, M.S.; Patularu, L.; Marinoiu, A.; Schitea, D.: The effects of cathode flow channel size and operating conditions on PEM fuel performance: a CFD modelling study and experimental demonstration. Int. J. Energy Res. 42, 1–16 (2018). https://doi.org/10.1002/er.4068

    Article  Google Scholar 

  31. Heidary, H.; Kermani, M.J.; Advani, S.G.; Prasad, A.K.: Experimental investigation of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells. Int. J. Hydrog. Energy 41, 6885–6893 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.028

    Article  Google Scholar 

  32. Liu, X.; Guo, H.; Ye, F.; Ma, C.F.: Flow dynamic characteristics in flow field of proton exchange membrane fuel cells. Int. J. Hydrog. Energy 33, 1040–1051 (2008). https://doi.org/10.1016/j.ijhydene.2007.11.018

    Article  Google Scholar 

  33. Wang, X.-D.; Duan, Y.-Y.; Yan, W.-M.; Weng, F.-B.: Effect of humidity of reactants on the cell performance of PEM fuel cells with parallel and interdigitated flow field designs. J. Power Sources 176, 247–258 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.065

    Article  Google Scholar 

  34. Kahveci, E.E.; Taymaz, I.: Assessment of single-serpentine PEM fuel cell model developed by computational fluid dynamics. Fuel 217, 51–58 (2018). https://doi.org/10.1016/j.fuel.2017.12.073

    Article  Google Scholar 

  35. Yuan, W.; Tang, Y.; Pan, M.; Li, Z.; Tang, B.: Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance. Renew. Energy 35, 656–666 (2010). https://doi.org/10.1016/j.renene.2009.08.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Suresh Patnaikuni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulla, S., Seepana, M.M. & Patnaikuni, V.S. Performance Comparison of PEM Fuel Cell with Enhanced Cross-Flow Split Serpentine and Single Serpentine Flow Field Designs. Arab J Sci Eng 45, 7691–7703 (2020). https://doi.org/10.1007/s13369-020-04803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04803-0

Keywords

Navigation