Skip to main content
Log in

Three-Dimensional CFD Modeling of Serpentine Flow Field Configurations for PEM Fuel Cell Performance

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A complete three-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model is proposed to study the influence of right-angle turn single serpentine (RAT1S), right-angle turn double serpentine (RAT2S), right-angle turn triple serpentine (RAT3S), and right-angle turn 3–2–1 serpentine (RAT321S) flow fields configuration on PEMFC performance with a commercial CFD code (ANSYS FLUENT). Simulations have been performed to envisage the pressure drop in the channel, the mass fraction of H2 and O2 along the anode and cathode channels, current flux density dispersion on the catalyst layer (CL), the membrane water content and proton conductivity as well as cell performance for proposed 4 flow field designs. A comparison of the simulation results of the four models was carried out. It has been found that the output of RAT321S flow field has improved compared to the RAT1S, RAT2S, and RAT3S flow field designs for the flow of the fixed-flow reactants, and RAT321S flow field model has been validated with experimental literature evidence. The results also show that the pressure drop losses are reduced as the number of passes increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11

Similar content being viewed by others

Abbreviations

\(uV\) :

Velocity (ms1)

\(p\) :

Pressure (N m2)

\(w_{i}\) :

Species mass fraction i in the mixture

\(D_{ij}\) :

Binary diffusion coefficient (m2s1)

\(k_{p}\) :

Permeability of GDL (m2)

\(k_{s}^{\text{eff}}\) :

Ionic conductivity of solid phase (Sm1)

\(i_{a}\) :

Anode transfer current density (Am2)

\(i_{c}\) :

Cathode transfer current density (Am2)

\(C_{{{\text{H}}_{2} }}\) :

Hydrogen concentration (molm3).

\(C_{{{\text{O}}_{2} }}\) :

Oxygen concentration (molm3).

\(k_{e}\) :

Ionic conductivity of the membrane (Sm1)

\(C_{{{\text{H}}_{2} {\text{O}},a}}^{{{\text{MEM}}}}\) :

Membrane water concentration at anode (Jmol1 K1)

\(C_{{{\text{H}}_{2} {\text{O}},c}}^{{{\text{MEM}}}}\) :

Membrane water concentration at cathode (Jmol1 K1)

T:

Cell operating temperature (K)

\(P_{s}\) :

Water saturation pressure (Pa)

\(W_{{{\text{net}}}}\) :

Net power density (Wcm2)

\(W_{{{\text{cell}}}}\) :

Cell power density (Wcm2)

\(A_{{{\text{cha}}}}\) :

Cathode channel cross-sectional area

\(N_{w}\) :

Net water flux across the membrane (kg m2 s1)

\(n_{d}\) :

Electro-osmotic drag coefficient

\(D_{w}\) :

Water diffusivity

\(c_{w}\) :

Number of water molecules per sulfonic acid group

\(\alpha_{a}\) :

Anode transfer coefficient

\(\alpha_{c}\) :

Cathode transfer coefficient

\(\emptyset_{s}\) :

Phase potential of solid

\(\emptyset_{e}\) :

Phase potential at the electrolyte

\(\Lambda\) :

Water content in the membrane

\(\eta\) :

Dynamic viscosity (kg m1 s1)

\(\eta_{a}\) :

Anode potential difference

\(\eta_{c}\) :

Cathode potential difference

\(\rho\) :

Density (kg m3)

MEM:

Membrane

ref:

Reference

eff:

Effective

References

  1. Caglayan, D.G.; Sezgin, B.; Devrim, Y.; Eroglu, I.: Three-dimensional modeling of a high-temperature polymer electrolyte membrane fuel cell at different operation temperatures. Int. J. Hydrog. Energy 41(23), 10060–10070 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.049

    Article  Google Scholar 

  2. Berning, T.; Lu, D.M.; Djilali, N.: Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Sour. 106(1), 284–294 (2002). https://doi.org/10.1016/S0378-7753(01)01057-6

    Article  Google Scholar 

  3. Nguyen, P.T.; Berning, T.; Djilali, N.: Computational model of a PEM fuel cell with serpentine gas flow channels. J. Power Sour. 130(1–2), 149–157 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.027

    Article  Google Scholar 

  4. Li, X.; Sabir, I.; Park, J.: A flow channel design procedure for PEM fuel cells with effective water removal. J. Power Sour. 163(2), 933–942 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.015

    Article  Google Scholar 

  5. Jeon, D.H.; Greenway, S.; Shimpalee, S.Ã.; Van Zee, J.W.; Van Zee, J.W.: The effect of serpentine flowfield designs on PEM fuel cell performance. Int. J. Hydrog. Energy 33(3), 1052–1066 (2008). https://doi.org/10.1016/j.ijhydene.2007.11.015

    Article  Google Scholar 

  6. Wang, X.D.; Duan, Y.Y.; Yan, W.M.; Peng, X.F.: Local transport phenomena and cell performance of PEM fuel cells with various serpentine flow field designs. J. Power Sour. 175(1), 397–407 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.009

    Article  Google Scholar 

  7. Jang, J.-H.; Yan, W.-M.; Li, H.-Y.; Tsai, W.-C.: Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cells with conventional flow fields. Int. J. Hydrog. Energy 33(1), 156–164 (2008). https://doi.org/10.1016/j.ijhydene.2007.09.005

    Article  Google Scholar 

  8. Carcadea, E., et al.: A computational fluid dynamics analysis of a PEM fuel cell system for power generation. Int. J. Numer. Methods Heat Fluid Flow 17(3), 302–312 (2007). https://doi.org/10.1108/09615530710730166

    Article  Google Scholar 

  9. Akbari, M.H.; Rismanchi, B.: Numerical investigation of flow field configuration and contact resistance for PEM fuel cell performance. Renew. Energy 33(8), 1775–1783 (2008). https://doi.org/10.1016/j.renene.2007.10.009

    Article  Google Scholar 

  10. Chang, D.H.; Wu, S.Y.: The effects of channel depth on the performance of miniature proton exchange membrane fuel cells with serpentine-type flow fields. Int. J. Hydrog. Energy 40(35), 11659–11667 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.153

    Article  Google Scholar 

  11. Lakshminarayanan, V.; Karthikeyan, P.; Muthukumar, M.; Senthil Kumar, A.P.; Kavin, B.; Kavyaraj, A.: Numerical investigation of performance studies on single pass PEM fuel cell with various flow channel design. Appl. Mech. Mater. 592–594, 1672–1676 (2014). https://doi.org/10.4028/www.scientific.net/AMM.592-594.1672

    Article  Google Scholar 

  12. Muthukumar, M.; Karthikeyan, P.; Lakshminarayanan, V.; Senthil Kumar, A.P.; Vairavel, M.; Girimurugan, R.: Performance studies on PEM Fuel cell with 2, 3 and 4 pass serpentine flow field designs. Appl. Mech. Mater. 592–594, 1728–1732 (2014). https://doi.org/10.4028/www.scientific.net/AMM.592-594.1728

    Article  Google Scholar 

  13. Khazaee, I.; Sabadbafan, H.: Numerical study of changing the geometry of the flow field of a PEM fuel cell. Heat Mass Transf. und Stoffuebertragung 52(5), 993–1003 (2016). https://doi.org/10.1007/s00231-015-1621-4

    Article  Google Scholar 

  14. Ruan, H.; Wu, C.; Liu, S.; Chen, T.: Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells. Heat Mass Transf. 52(10), 2167–2176 (2016). https://doi.org/10.1007/s00231-015-1737-6

    Article  Google Scholar 

  15. Vijayakrishnan, M.K.; Palaniswamy, K.; Ramasamy, J.; Kumaresan, T.; Manoharan, K.; Rajagopal, T.K.R.; Yi, S.C.: Numerical and experimental investigation on 25 cm2 and 100 cm2 PEMFC with novel sinuous flow field for effective water removal and enhanced performance. Int. J. Hydrog. Energy 45(13), 7848–7862 (2020)

    Article  Google Scholar 

  16. Kerkoub, Y.; Benzaoui, A.; Haddad, F.; Ziari, Y.K.: Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell. Energy Convers. Manag. 174, 260–275 (2018). https://doi.org/10.1016/j.enconman.2018.08.041

    Article  Google Scholar 

  17. Ghanbarian, A.; Kermani, M.J.; Scholta, J.; Abdollahzadeh, M.: Polymer electrolyte membrane fuel cell flow field design criteria application to parallel serpentine flow patterns. Energy Convers. Manag. 166, 281–296 (2018). https://doi.org/10.1016/j.enconman.2018.04.018

    Article  Google Scholar 

  18. Suresh, P.V.; Jayanti, S.; Deshpande, A.P.; Haridoss, P.: An improved serpentine flow field with enhanced crossflow for fuel cell applications. Int. J. Hydrog. Energy 36, 6067–6072 (2011)

    Article  Google Scholar 

  19. Liu, H.; Li, P.; Juarez-robles, D.; Wang, K.; Hernandez-guerrero, A.: Experimental study and comparison of various designs of gas flow fields to PEM fuel cells and cell stack performance. Front. Energy Res. (2014). https://doi.org/10.3389/fenrg.2014.00002

    Article  Google Scholar 

  20. Li, W.; Zhang, Q.; Wang, C.; Yan, X.; Shen, S.; Xia, G.; Zhang, J.: Experimental and numerical analysis of a three-dimensional flow field for PEMFCs. Appl. Energy 195, 278–288 (2017)

    Article  Google Scholar 

  21. Rahimi-Esbo, M.; Ramiar, A.; Ranjbar, A.A.; Alizadeh, E.: Design, manufacturing, assembling and testing of a transparent PEM fuel cell for investigation of water management and contact resistance at dead-end mode. Int. J. Hydrog. Energy 42(16), 11673–11688 (2017)

    Article  Google Scholar 

  22. Xu, C.; Zhao, T.S.: A new flow field design for polymer electrolyte-based fuel cells. Electrochem. Commun. 9, 497–503 (2007)

    Article  Google Scholar 

  23. Manso, A.P.; Marzo, F.F.; Barranco, J.; Garikano, X.; Garmendia, M.M.: Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell a review. Int J Hydrog. Energy 37, 15256–15287 (2012)

    Article  Google Scholar 

  24. Min, C.H.: Performance of a proton exchange membrane fuel cell with a stepped flow field design. J Power Sour. 186(2), 370e6 (2009)

    Article  Google Scholar 

  25. Jang, J.H.; Yan, W.M.; Li, H.Y.; Chou, Y.C.: Humidity of reactant fuel on the cell performance of PEM fuel cell with baffle-blocked flow field designs. J Power Sour. 159(1), 468e77 (2006)

    Article  Google Scholar 

  26. Yin, Y.; Wang, X.; Shangguan, X.; Zhang, J.; Qin, Y.: Numerical investigation on the characteristics of mass transport and performance of PEMFC with baffle plates installed in the flow channel. Int J Hydrog. Energy 43(16), 8048e62 (2018)

    Article  Google Scholar 

  27. Barati, S.; Khoshandam, B.; Ghazi, M.M.: An investigation of channel blockage effects on hydrogen mass transfer in a proton exchange membrane fuel cell with various geometries and optimization by response surface methodology. Int J Hydrog. Energy 43(48), 21928e39 (2018)

    Article  Google Scholar 

  28. Wang, X.D.; Duan, Y.Y.; Yan, W.M.: Novel serpentine-baffle flow field design for proton exchange membrane fuel cells. J Power Sour. 173(1), 210e21 (2007)

    Article  Google Scholar 

  29. Manso, A.P.; Marzo, F.F.; Barranco, J.; Garikano, X.; Mujika, M.G.: Influence of geometric parameters of the flow fields on the performance of a PEM fuel cell a review. Int. J. Hydrog. Energy 37(20), 15256–15287 (2012)

    Article  Google Scholar 

  30. Lim, B.H.; Majlan, E.H.; Daud, W.R.W.; Husaini, T.; Rosli, M.I.: Effects of flow field design on water management and reactant distribution in PEMFC: a review. Ionics 22(3), 301–316 (2016)

    Article  Google Scholar 

  31. Anderson, R.; Zhang, L.; Ding, Y.; Blanco, M.; Bi, X.; Wilkinson, D.P.: A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells. J. Power Sour. 195(15), 4531–4553 (2010)

    Article  Google Scholar 

  32. Wang, J.: Theory and practice of flow field designs for fuel cell scaling-up: a critical review. Appl. Energy 157, 640–663 (2015)

    Article  Google Scholar 

  33. Salva, J.A.; Iranzo, A.; Rosa, F.; Tapia, E.: Validation of cell voltage and water content in a PEM (polymer electrolyte membrane) fuel cell model using neutron imaging for different operating conditions. Energy 101, 100–112 (2016). https://doi.org/10.1016/j.energy.2016.02.006

    Article  Google Scholar 

  34. Iranzo, A.; Muñoz, M.; Rosa, F.; Pino, J.: Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental validation. Int. J. Hydrog. Energy 35(20), 11533–11550 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.129

    Article  Google Scholar 

  35. Saripella, B.P.; Koylu, U.O.; Leu, M.C.: Experimental and computational evaluation of performance and water management characteristics of a bio-inspired proton exchange membrane fuel cell. J. Fuel Cell Sci. Technol. 12(6), 061007 (2015). https://doi.org/10.1115/1.4032041

    Article  Google Scholar 

  36. Li, Y.-S.; Han, Y.; Zhan, J.-M.: Uniformity analysis in different flowfield configurations of proton exchange membrane fuel cell. J. Fuel Cell Sci. Technol. 10(3), 031003 (2013). https://doi.org/10.1115/1.4024252

    Article  Google Scholar 

  37. Velisala, V.; Srinivasulu, G.N.: Numerical simulation and experimental comparison of single, double and triple serpentine flow channel configuration on performance of a PEM fuel cell. Arab. J. Sci. Eng. 43(3), 1225–1234 (2017)

    Article  Google Scholar 

  38. Iranzo, A.; Muñoz, M.; López, E.; Pino, J.; Rosa, F.: Experimental fuel cell performance analysis under different operating conditions and bipolar plate designs. Int. J. Hydrog. Energy 35(20), 11437–11447 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.056

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkateswarlu Velisala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velisala, V., Pullagura, G., Yarramsetty, N. et al. Three-Dimensional CFD Modeling of Serpentine Flow Field Configurations for PEM Fuel Cell Performance. Arab J Sci Eng 46, 11687–11700 (2021). https://doi.org/10.1007/s13369-021-05544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05544-4

Keywords

Navigation