Skip to main content

Advertisement

Log in

Desertification Risk Assessment of Sand Dunes in Middle Egypt: A Geotechnical Environmental Study

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

A Correction to this article was published on 16 May 2019

This article has been updated

Abstract

The evaluation of aeolian desertification of sand dunes in north Assuit, Middle Egypt, has been achieved throughout a variety of detailed field investigations and laboratory measurements. The study area lies in hot dry desert climatic conditions where the sand dunes migration represents an effective threat cultivated lands, reclaimed lands, asphaltic roads and the systems of human distribution. Its mean annual rainfall is about 51 mm. Except the Nile Valley, Egypt is mostly considered as dry desert lands so about 4% of its surface area is under plough. The study barchans are mainly composed of poorly graded sands and consist of fine sand, medium sand and a negligible amount of coarse sand, silts and clays. Compositionally, the studied sand dunes are mainly consist of quartz, rock fragments and negligible amounts of feldspars with the absence of any chemically active constitutes (e.g. chert, flint, chalcedony and dolomite). These sands are also free of organic matter. The removal of dune sands in hazardous sites considers a short-term solution method of the aeolian desertification problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 16 May 2019

    In the original publication the grant number is incorrectly published. The grant number D-071-145-1439.

References

  1. UNEP: Development of guidelines for assessment and mapping of desertification and degradation in Asia/Pacific. In: Proceedings of Draft Report of the Expert Panel Meeting (1994)

  2. Gad, A.; Abdel-Samie, A.G.: Study on desertification of irrigated arable lands in Egypt. Egypt J. Soil Sci. 40(3), 373–384 (2000)

    Google Scholar 

  3. Wang, T.; Zhu, Z.D.: Study on sandy desertification in China: 1. Definition of sandy desertification and its connotation. J. Desert Res. 23(3), 209–214 (2003)

    Google Scholar 

  4. Huang, S.; Siegert, F.: Land cover classification optimized to detect areas at risk of desertification in North China based on SPOT VEGETATION imagery. J. Arid Environ. 67(2), 308–327 (2006)

    Article  Google Scholar 

  5. Song, X.; Yan, C.Z.; Li, S.; Xie, J.L.: Assessment of sandy desertification trends in the Shule River Basin from 1978 to 2010. Sci. Cold Arid Reg. 6(1), 52–58 (2014)

    Google Scholar 

  6. UNCCD: United Nations Convention to Combat Desertification in those countries experiencing serious drought and/or desertification, particularly in Africa. UNCCD explanatory leaflet, UNCCD Secretariat, Bonn (2008)

  7. Kenneth, A.; Bert, B.; Robert, C.; Partha, D.; Carl, F.; Holling, C.S.; Bengt-Owe, J.; Simon, L.; Karl-Göran, M.; Charles, P.; Pimentel, D.: Economic growth, carrying capacity, and the environment. Ecol. Econ. 15(2), 91–95 (1995)

    Article  Google Scholar 

  8. Ali, A.; Abdu Anwar, S.; Al-Zubari, W.K.; Alaa, E.; Mahmmod, A.: Desertification in the Arab region: analysis of current status and trends. J. Arid Environ. 51(4), 521–545 (2002)

    Article  Google Scholar 

  9. Portnor, B.A.; Safriel, U.N.: Combating desertification in the Neger: dryland agriculture versus dryland urbanization. J. Arid Environ. 56, 659–680 (2004)

    Article  Google Scholar 

  10. Abubakar, S.M.: Monitoring land degradation in the semiarid tropics using an inferential approach: the Kabomo basin case study, Nigeria. Land Degrad. Dev. 8(4), 311–323 (1997)

    Article  Google Scholar 

  11. Verstraete, M.M.; Scholes, R.J.; Stafford, S.M.: Climate and desertification: looking at an old problem through new lenses. Front. Ecol. Environ. 7(8), 421–428 (2009)

    Article  Google Scholar 

  12. Warren, A.: Land degradation is contextual. Land Degrad. Dev. 13(6), 449–459 (2002)

    Article  Google Scholar 

  13. Abu Seif, E.S.: Assessing the engineering properties of concrete made with fine dune sands: an experimental study. Arab. J. Geosci. 6, 857–863 (2013)

    Article  Google Scholar 

  14. El Quosy, D.E.D.: Mitigation and adaptation options of climate change in irrigated agriculture in Arab countries, 14th chapter. In: Mannava, V.K., Sivakumar, M.V.K., Lal, R., Selvaraju, R., Hamdan, I. (eds.) Climate Change and Food Security in West Asia and North Africa, p. 422. Springer, Berlin (2013)

    Google Scholar 

  15. FAO: AQUASTAT-FAO’s Global Information System on Water and Agriculture. Food and Agriculture Organization of the United Nations, Rome (2012)

  16. EMA: Egyptian Meteorological Authority, South Valley Station Annual Report (2015)

  17. Abdel Moneim, A.A.; Fernández-Álvarez, J.P.; Abu El Ella, E.M.; Masoud, A.M.: Groundwater management at West El-Minia Desert Area, Egypt using numerical modeling. J. Geosci. Environ. Prot. 4, 66–76 (2016)

    Google Scholar 

  18. Said, R.: Planktonic foraminifera from the Thebes Formation, Luxor, Egypt. Micropaleontology 6(3), 227–286 (1960)

    Article  Google Scholar 

  19. Bishay, Y.: Biostratigraphic study of the Eocene in Eastern Desert between Samalut and Assuit by the large foraminifera. 3rd Arab. Pet. Congr. Alex. 2, 1–13 (1961)

    Google Scholar 

  20. Bishay, Y.: Studies on the larger foraminifera of the Eocene of the Nile Valley between Assiut, Cairo and S.W. Sinai. Ph.D. Thesis, Alexandria University, Egypt (1966)

  21. Abu Seif, E.S.: Geological evolution of Nile Valley, west Sohag, Upper Egypt: a geotechnical perception. Arab. J. Geosci. 8, 11049–11072 (2015)

    Article  Google Scholar 

  22. Issawi, B.; El-Hinnawi, M.; Francis, M.; Mazhar, A.: The Phanerozoic Geology of Egypt—A Geodynamic Approach, p. 462. The Egyptian Geological Survey Press, Cairo (1999)

    Google Scholar 

  23. Issawi, B.: Archean–Phanerozoic birth and the development of the Egyptian Land. In: 1st International Conference on the Geology of the Tethys, Cairo University, pp. 339–380 (2005)

  24. Mahran, T.M.; El-Shater, A.; Youssef, A.M.; El-Haddad, B.A.: Facies analysis and tectonic-climatic controls of the development of Pre-Eonile and Eonile sediments of the Egyptian Nile west of Sohag. In: The 7th International Conference on the Geology of Africa, Assiut, Egypt, (Abstract) (2013)

  25. Tarabees, E.A.; Tewksbury, B.J.; Mehrtens, C.J.; Younis, A.: Audio-magnetotelluric surveys to constrain the origin of a network of narrow synclines in Eocene limestone, Western Desert, Egypt. J. Afr. Earth Sci. (2017). https://doi.org/10.1016/j.jafrearsci.2017.03.001.

  26. Tewksbury, B.J.; Tarabees, E.A.; Mehrtens, C.J.: Origin of an extensive network of non-tectonic synclines in Eocene limestones of the Western Desert, Egypt. J. Afr. Earth Sci. (2017). https://doi.org/10.1016/j.jafrearsci.2017.02.017

  27. Said, R.: The geological evolution of the River Nile. In: Wendorf, F., Maks, A.F. (eds.) Problems in Prehistory of Northern Africa and the Levant, pp. 1–44. Southern Methodist University Press, Dallas (1975)

    Google Scholar 

  28. Said, R.: The Geological Evolution of the River Nile. Springer, New York (1981)

    Book  Google Scholar 

  29. Zaki, R.: Pleistocene evolution of the Nile Valley in northern Upper Egypt. Quat. Sci. Rev. 26(22–24), 2883–2896 (2007)

    Article  Google Scholar 

  30. Omran, A.A.: Integration of remote sensing, geophysics and GIS to evaluate groundwater potentiality: a case study in Sohag Region, Egypt. In: The 3rd International Conference on Water Resources and Arid Environments and the 1st Arab Water Forum (2008)

  31. Philobbos, E.R.; Essa, M.A.; Ismail, M.M.: Geologic history of the Neogene "Qena Lake" developed during the evolution of the Nile Valley: a sedimentological, mineralogical and geochemical approach. J. Afr. Earth Sci. 101, 194–219 (2015)

    Article  Google Scholar 

  32. ASTM C33: Standard Specification for Concrete Aggregates. American Society for Testing and Materials, ASTM Specification, Philadelphia (1999)

  33. ASTM C128: Standard Test Method for Specific Gravity and Absorption of Fine Aggregate. ASTM C 128, American Society for Testing and Materials, ASTM specification, Philadelphia (1993)

  34. ASTM D2419-95: Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate, pp. 1103–1187. American Society for Testing and Materials, Philadelphia (1998)

  35. Powers, M.C.: A new roundness scale for sedimentary particles. J. Sediment Pet. 23, 117–119 (1953)

    Google Scholar 

  36. ASTM C469: Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. American Society for Testing and Materials, ASTM Specification, Philadelphia (1994)

  37. Bagnold, R.A.: The Physics of Blown Sand and Desert Dunes. Methuen, London (1941)

    Google Scholar 

  38. Pye, K.; Tsoar, H.: Aeolian Sand and Sand Dunes, p. 458. Springer, Berlin (2009)

    Book  Google Scholar 

  39. Reesink, A.J.H.; Bridge, J.S.: Influence of superimposed bedforms and flow unsteadiness on formation of cross strata in dunes and unit bars. Sediment. Geol. 202, 281–296 (2007)

    Article  Google Scholar 

  40. Bell, F.G.: Geological Hazards, Their Assessment, Avoidance and Mitigation, p. 648. E & FN Spon, London (1999)

    Book  Google Scholar 

  41. Makse, H.A.; Ball, R.C.; Stanley, H.E.; Warr, S.: Dynamics of granular stratification. Phys. Rev. E 58(3), 3357–3367 (1998)

    Article  Google Scholar 

  42. Makse, H.A.; Havlin, S.; King, P.R.; Stanley, H.E.: Spontaneous stratification in granular mixtures. Nature 386, 379–382 (1997)

    Article  Google Scholar 

  43. Zaki, R.; Wali, A.; Mosa, M.: Sedimentological and hydrochemical spectrum of recent continental sabkha and signs of its capabilities to generate hydrocarbons: a case study in northwest El Fashn area, Western Desert, Egypt. Carbonates Evaporites 26, 273–286 (2011)

    Article  Google Scholar 

  44. Daniell, J.J.; Hughes, M.: The morphology of barchan-shaped sand banks from western Torres Strait, northern Australia. Sediment. Geol. 202, 638–652 (2007)

    Article  Google Scholar 

  45. Livingstone, I.; Wiggs, G.F.S.; Weaver, C.M.: Geomorphology of desert sand dunes: a review of recent progress. Earth Sci. Rev. 80, 239–257 (2007)

    Article  Google Scholar 

  46. Hesp, P.A.; Hastings, K.: Width, height and slope relationships and aerodynamic maintenance of barchans. Geomorphology 22, 193–204 (1998)

    Article  Google Scholar 

  47. Sagga, A.M.: Barchan dunes of Wadi Khulays, western region of Saudi Arabia: geomorphology and sedimentology relationships. J. KAAU Earth Sci. 10, 105–114 (1998)

    Article  Google Scholar 

  48. Sauermann, G.; Rognon, P.; Poliakov, A.; Herrmann, H.J.: The shape of the barchan dunes of Southern Morocco. Geomorphology 36, 47–62 (2000)

    Article  Google Scholar 

  49. Al-Harthi, A.A.: Geohazard assessment of sand dunes between Jeddah and Al-Lith, western Saudi Arabia. Environ. Geol. 42, 360–369 (2002)

    Article  Google Scholar 

  50. Bell, F.G.: Engineering Geology, 2nd edn, p. 581. Butterworth-Heinemann is an imprint of Elsevier (2007)

  51. Yool, A.I.G.; Lees, T.P.; Fried, A.: Improvements to the methylene blue dye test for harmful clay in aggregates for concrete and mortar. Cem. Concr. Res. 28(10), 1417–1428 (1998)

    Article  Google Scholar 

  52. Dumitru, I.; Zdrilic, T.; Crabb, R.: Methylene blue adsorption value (MBV). Is it a rapid test method for the assessment of rock quality? In: Proceedings, 43rd Annual Conference of the Institute of Quarrying, Australia (1999)

  53. Hudson, B.: (1999) Modification to the fine aggregate angularity test. In: Proceedings, Seventh Annual International Center for Aggregates Research Symposium, Austin, TX

  54. Folk, R.L.: Petrology of Sedimentary Rocks. Hemphill’s, Drawer M. University Station, Austin (1968)

    Google Scholar 

  55. Smith, R.C.: Materials and Construction, 3rd edn, p. 94. McGraw-Hill Inc, New York (1979)

    Google Scholar 

  56. Ahn, N.: An experimental study on the guidelines for using higher contents of aggregate microfines in Portland cement concrete. Ph.D., University of Texas at Austin (2000)

  57. De Larrard, F.; Hu, C.; Sedran, T.; Szitkar, J.C.; Joly, M.; Claux, F.; Derkx, F.: A new rheometer for soft-to-fluid fresh concrete. ACI Mater. J. 94(3), 234–243 (1997)

    Google Scholar 

  58. Shilstone, J.M.: The aggregate: the most important value-adding component in concrete. In: Proceedings of the 7th Annual International Center for Aggregates Research Symposium, Austin, Texas (1999)

  59. Abu Seif, E.S.; Sonbul, A.R.; Hakami, B.A.H.; El-Sawy, E.K.: Experimental study on the utilization of dune sands as a construction material in the area between Jeddah and Mecca, Western Saudi Arabia. Bull. Eng. Geol. Environ. 75, 1007–1022 (2016)

    Article  Google Scholar 

  60. Sabatini, F.H.: O processo construtivo de edifícios de alvenaria estrutural sílicocalcário. Thesis of Master of Science, University of São Paulo, São Paulo (1984)

  61. Wilby, C.B.: Concrete Materials and Structures. Cambridge University Press, Cambridge, MA (1991)

    Google Scholar 

  62. Cramer, S.M.; Hall, M.; Parry, J.: Effect of optimized total aggregate grading on Portland cement concrete for Wisconsin Pavements. Transportation Research Record, No. 1478, National Research Council, pp. 100–106 (1995)

  63. Gillott, J.E.: Properties of aggregates affecting concrete in North America. Q. J. Eng. Geol. Hydrogeol. 13(4), 289–303 (1980)

    Article  Google Scholar 

  64. Langer, W.H.: Natural Aggregates of the Conterminous United States. U.S. Geological Survey Bulletin No. 1594, 2nd Printing (1993)

  65. Rocco, C.G.; Elices, M.: Effect of aggregate shape on the mechanical properties of a simple concrete. Eng. Fract. Mech. 76, 286–298 (2009)

    Article  Google Scholar 

  66. Neville, A.M.: Properties of Concrete, p. 844. Longman Group Limites, London (1995)

    Google Scholar 

  67. Galloway Jr., J.E.: Grading, shape and surface properties. ASTM special technical publication No. 169C, Philadelphia, pp. 401–410 (1994)

  68. Khalaf, F.I.: Desertification and aeolian processes in the Kuwait desert. J. Arid Environ. 16, 125–145 (1989)

    Article  Google Scholar 

  69. Al-Nakshabandi, G.A.; El Robee, F.T.: Aeolian deposits in relation to climatic conditions, soil characteristics and vegetative cover in the Kuwait desert. J. Arid Environ. 15, 229–243 (1988)

    Article  Google Scholar 

  70. Clements, T.; Stone, R.O.; Mann, J.F.; Eymann Jr., J.L.: A study of windborne sand and dust in desert areas. Natick: US Army Natick Laboratory. (Report ES-8) (1963)

  71. Hidore, J.J.; Albokhair, Y.: Sand encroachment in Al-Hasa Oasis. Geogr. Rev. 72, 350–356 (1982)

    Article  Google Scholar 

  72. Watson, A.: The control of wind blown sand and moving dunes: a review of the methods of sand control in deserts with observations from Saudi Arabia. Q. J. Eng. Geol. 18, 237–252 (1985)

    Article  Google Scholar 

  73. Khan, I.H.: Soil studies for highway construction in arid zones. Eng. Geol. 19, 47–62 (1982)

    Article  Google Scholar 

  74. Al-Sanad, H.A.; Ismael, N.F.; Nayfeh, A.J.: Geotechnical properties of dune sands in Kuwait. Eng. Geol. 34, 45–52 (1993)

    Article  Google Scholar 

  75. Al-Harthy, A.S.; Abdel Halim, M.; Taha, R.; Al-Jabri, K.S.: The properties of concrete made with fine dune sand. Constr. Build. Mater. 21, 1803–1808 (2007)

    Article  Google Scholar 

  76. Padmakumar, G.P.; Srinivas, K.; Uday, K.V.; Iyer, K.R.; Pathak, P.; Keshava, S.M.; Singh, D.N.: Characterization of aeolian sands from Indian desert. Eng. Geol. 139–140, 38–49 (2012)

    Article  Google Scholar 

  77. Luo, F.J.; Heb, L.; Pan, Z.; Duan, W.H.; Zhao, X.L.; Collins, F.: Effect of very fine particles on workability and strength of concrete made with dune sand. Constr. Build. Mater. 47, 131–137 (2013)

    Article  Google Scholar 

  78. Robinson, G.R.; Brown, W.M.: Sociocultural Dimensions of Supply and Demand for Natural Aggregate-Examples from the Mid-Atlantic Region, United States. U.S. Geological Survey Open-File Report 02-350 (2001)

  79. Abu Seif, E.S.: Geotechnical approach to evaluate natural fine aggregates concrete strength, Sohag Governorate, Upper Egypt. Arab. J. Geosci. 8, 7565–7575 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. (D-145-078-1439). The authors, therefore, acknowledge with thanks Deanship of Scientific Research (DSR) for technical and financial support. Also, the authors are deeply grateful to Professor Bassam El Ali (editor of Arabian Journal for Science and Engineering) as well as the anonymous reviewers for insightful comments and criticism that improved the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Sayed Sedek Abu Seif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Seif, ES.S., El-Khashab, M.H. Desertification Risk Assessment of Sand Dunes in Middle Egypt: A Geotechnical Environmental Study. Arab J Sci Eng 44, 357–375 (2019). https://doi.org/10.1007/s13369-018-3343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3343-7

Keywords

Navigation