Skip to main content
Log in

Kinetic Studies on the Reduction of Iron Oxides in Low-Grade Chromite Ore by Coke Fines for Its Beneficiation

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In a novel method of beneficiation of low-grade chromite ore, nuggets, 25 mm in diameter and 10 mm long, made of chromite ore and coke fines, are subjected to partial reduction. A significant degree of reduction of iron oxide is observed at temperatures of 1373–1523 K up to a reduction time of 240 min, and subsequent magnetic separation is found to enrich the low-grade chromite ore. In the kinetic studies performed on the partial reduction of chromite ore, nucleation and growth model NG1 (Avrami–Erofeev eq.; \(n=1\)) is found to be the rate-controlling regime. However, during the early phase of the reaction, particularly at lower temperature up to 1423 K, the nucleation and growth model NG2 (Avrami–Erofeev eq., \(n = 2\)) predicts the reduction behaviour better. At higher conversion, particularly at a higher temperature of 1523 K, diffusion plays a significant role. The average apparent activation energy of reaction, based on the NG1 model over the entire reaction period, is estimated to be 38.52 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta, P.: Utilization of low grade chromite ores in mag-chrome refractories, M.Tech. dissertation, Jadavpur University, India (2016)

  2. Saki, M.; Chakrabarti, A.K.; Kipit, W.: Concentration of Hessen Bay Chromite Ore. In: 7th Huon Seminar achieving vision 2050 through higher education, research, science and technology, Lae, Papua New Guinea, November 13–14, 2013

  3. Neuschutz, D.: Kinetic Aspects of Chromite Ore Reduction with Coal at 1200 to \(1550^{\circ }\text{C}\). In: INFACON 6, Proceedings of 6th International Ferro-Alloys Congress, Cape Town, vol. I, Johannesburg, p. 65 (1992)

  4. Weber, P.; Eric, R.H.: The reduction mechanism of chromite in the presence of a silica flux. Metall. Trans. B 24(B), 987 (1993)

    Article  Google Scholar 

  5. Reddy, R.G.; Inturi, R.B.; Klein, M.V.: Low temperature reduction of chromite ores with carbon. In: EPD Congress Proceedings Sessions and Symposium, Extraction and Processing Division, TMS, TMS Annual Meeting, San Antonio, TX, February, 16–19, 1998, Warrendale, PA, p. 697 (1998)

  6. Chakraborty, D.; Ranganathan, S.; Sinha, S.N.: Investigations on the carbothermic reduction of chromite ores. Metall. Mater. Trans. B 36B, 437 (2005)

    Article  Google Scholar 

  7. Li, J.; Bai, G.; Li, G.: Solid-state reduction properties of carbon-bearing chromite pellets. Chin. J. Nonferr. Met. 21(5), 1159 (2011). (in Chinese)

    MathSciNet  Google Scholar 

  8. Li, C.; Chang, G.; Peng, J.: Selective reduction of chromite fines by microwave treatment. Chin. J. Nonferr. Met. 23(2), 503 (2013). (in Chinese)

    Google Scholar 

  9. Sundar Murti, N.S.; Seshadri, V.: Kinetics of reduction of synthetic chromite with carbon. Tran. Iron Steel Inst. Jpn. 22, 925 (1982)

    Article  Google Scholar 

  10. Sundar Murti, N.S.; Seshadri, V.: Studies on pelletization carbothermic reduction and up grading of chromite. Trans. Indian Inst. Met. 38(5), 423 (1985)

    Google Scholar 

  11. Nafziger, R.H.; Tress, J.E.; Paige, J.I.: Carbothermic reduction of domestic chromites. Metall. Trans. B 10B, 5 (1979)

    Article  Google Scholar 

  12. Vuuren, C.P.J.; Van Bodenstein, J.J.; Sciarone, M.; Kestens, P.: The reduction of synthetic iron chromite in the presence of various metal oxides—a thermo-analytical study. In: INFACON 6, Proceedings of 6th International Ferro-Alloys Congress, Cape Town, 1992, SAIMM, Johannesburg, p. 51 (1992)

  13. Vazarlis, H.G.; Lekatou, A.: Pelletising-sintering, prereduction, and smelting of Greek chromite ores and concentrates. Ironmak. Steelmak. 20(1), 42 (1993)

    Google Scholar 

  14. Barcza, N.A.; Jochens, P.R.; Howat, D.D.: The mechanism and kinetics of the reduction of Transvaal chromite ores. In: Proceedings of 29th Electric Furnace Conference, Toronto, December 8–10, 1971, TMS-AIME, Warrendale, PA, p. 88 (1972)

  15. Kekkonen, M.; Xiao, Y.; Holappa, L.: Kinetic study on solid state reduction of chromite pellets. In: INFACON 7, Proceedings of 7th International Ferro-Alloys Congress, The Norwegian Ferro Alloy Research Organization (FFF) and SINTEF Materials Technology, Trondheim, Norway, p. 1 (1992)

  16. Leatou, A.; Walker, R.D.: Mechanism of solid state reduction of chromite concentrate. Ironmak. Steelmak. 22(5), 393 (1995)

    Google Scholar 

  17. Lekatou, A.; Walker, R.D.: Solid state reduction of chromite concentrate: melting of prereduced chromite. Ironmak. Steelmak. 22(5), 378 (1995)

    Google Scholar 

  18. Ding, Y.L.; Warner, N.A.: Kinetics and mechanism of reduction of carbon–chromite composite pellets. Ironmak. Steelmak. 24(3), 224 (1997)

    Google Scholar 

  19. Ding, Y.L.; Warner, N.A.: Reduction of carbon–chromite composite pellets with silica flux. Ironmak. Steelmak. 24(4), 283 (1997)

    Google Scholar 

  20. Ding, Y.L.; Warner, N.A.; Merchant, A.J.: Reduction of chromite by graphite with CaO-\(\text{ SiO }_2\) fluxes. Scand. J. Metall. 26, 55 (1997)

    Google Scholar 

  21. Zhang, Y.; Guo, W.; Liu, Y.; Jia, X.: Reduction mechanism of \(\text{ Fe }_{2}\text{ O }_{3}-\text{ Cr }_{2}\text{ O }_{3}\)-NiO system by carbon. J. Cent. South Univ. 23, 1318 (2016)

    Article  Google Scholar 

  22. Zhang, Y.; Liu, Y.; Wei, W.: Carbothermal reduction process of the Fe–Cr–O system. Int. J. Miner. Metall. Mater. 20(10), 931 (2013)

    Article  Google Scholar 

  23. Man, Y.; Feng, J.X.; Li, F.J.; Ge, Q.; Chen, Y.M.; Zhou, J.Z.: In?uence of temperature and time on reduction behavior in iron ore-coal composite pellets. Powder Technol. 256, 361 (2014)

    Article  Google Scholar 

  24. Sah, R.; Dutta, S.K.: Kinetic studies of iron ore-coal composite pellet reduction by TG-DTA. Trans. Indian Inst. Met. 64(6), 583 (2011)

    Article  Google Scholar 

  25. Gupta, P.; De, A.; Biswas, C.: The effect of presence of \(\text{ SiO }_{{2}}, \text{ Al }_{{2}}\text{ O }_{{3}}\) and \(\text{ P }_{{2}}\text{ O }_{{5}}\) on the reduction behaviour of \(\text{ Fe }_{{2}}\text{ O }_{{3}}\) nuggets with coke fines. Arab. J. Sci. Eng. 41(12), 4743 (2016)

    Article  Google Scholar 

  26. Wang, Z.; Li, G.; Sun, Y.; He, M.: Reduction behavior of hematite in the presence of coke. Int. J. Miner. Metall. Mater. 23(11), 1244 (2016)

    Article  Google Scholar 

  27. Biswas, C.; Gupta, P.; De, A.; Ghosh Chaudhuri, M.; Dey, R.: Kinetic studies on the reduction of iron ore nuggets by devolatilization of lean grade coal. Int. J. Miner. Metall. Mater. 23(12), 2016 (2016)

    Article  Google Scholar 

  28. Mohanty, M.K.; Mishra, S.; Mishra, B.; Sarkar, S.: Effect of basicity on the reduction behavior of iron ore pellets. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-018-3107-4

    Article  Google Scholar 

  29. Sarkar, B.K.; Samanta, S.; Dey, R.; Das, G.C.: A study on reduction kinetics of titaniferous magnetite ore using lean grade coal. Int. J. Min. Process. 152, 36 (2016)

    Article  Google Scholar 

  30. Hu, T.; Lü, X.; Bai, C.; Qiu, G.: Isothermal reduction of titanomagnetite concentrates containing coal. Int. J. Min. Metall. Mater 21(2), 131 (2014)

    Article  Google Scholar 

  31. Tang, J.; Chu, M.; Li, F.; Tang, Y.; Liu, Z.; Xue, X.: Reduction mechanism of high-chromium vanadium-titanium magnetite pellets by \(\text{ H }_{2}{-}\text{ CO }{-}\text{ CO }_{2}\) gas mixtures. Int. J. Min. Metall. Mater. 22(6), 562 (2015)

    Article  Google Scholar 

  32. Halikia, I.; Zoumpoulakis, L.; Christodoulou, E.; Prattis, D.: Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis. Eur. J. Min. Proc. Environ. Prot. 1(2), 89 (2001)

    Google Scholar 

  33. Szekely, J.; Evens, J.W.; Sohn, H.Y.: Gas–Solid Reaction. Academic Press, New York (1967)

    Google Scholar 

  34. Khawam, A.; Flanagan, D.R.: Solid-state kinetic models: basics and mathematical fundamentals. J. Phys. Chem. B 110, 17315 (2006)

    Article  Google Scholar 

  35. Biswas, S.; Chakraborty, S.; Chaudhuri, M.G.; Banerjee, P.C.; Mukherjee, S.; Dey, R.: Optimization of process parameters and dissolution kinetics of nickel and cobalt from lateritic chromite overburden using organic acids. J. Chem. Technol. Biotechnol. 89, 1491 (2014)

    Article  Google Scholar 

  36. Perry, K.P.D.; Finn, C.W.P.; King, R.P.: An ionic diffusion mechanism of chromite reduction. Metall. Trans. B 19, 677 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prithviraj Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Bhandary, A.K., Chaudhuri, M.G. et al. Kinetic Studies on the Reduction of Iron Oxides in Low-Grade Chromite Ore by Coke Fines for Its Beneficiation. Arab J Sci Eng 43, 6143–6154 (2018). https://doi.org/10.1007/s13369-018-3324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3324-x

Keywords

Navigation