Skip to main content
Log in

Kinetic Studies of Iron Ore–Coal Composite Pellet Reduction by TG–DTA

  • Original Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

An attempt has been made to study the effect of coal quality on the reduction kinetics of iron ore–coal composite pellets under non-isothermal condition in inert atmosphere. During non-isothermal reduction of composite pellets, it is observed that (i) reduction rate of iron oxide increases with increasing temperature, (ii) reduction rate increases with increase in porosity of pellets and (iii) the computed values of activation energy (E) are lower during the initial stage of reduction (0.86–8.82 kJ mol−1) than those in the later stages of reduction (12.37–38.32 kJ mol−1). These values indicate that the initial stage reduction is controlled by gaseous diffusion mechanism and at final stage, mixed control reaction mechanism (i.e., both gaseous-diffusion and chemical reaction) is the rate controlling step. The present investigation aims at to assess the effect of Fetot/Cfix ratio in pellet, volatile matter in coal, and temperature on the reduction kinetics of iron ore–coal composite pellets using simultaneous thermogravimetric and differential thermal analyser (TG–DTA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor (s−1)

E :

Activation energy (kJ mol−1)

F :

Fraction of reduction

f wl :

Fractional weight loss

f coal :

Fraction of coal present in composite pellet

f vm :

Fraction of volatile matters present in coal

f vr :

Fraction of volatiles released during reduction at a particular temperature

f ore :

Fraction of ore present in composite pellet

ρ ore :

Purity of iron oxide (Fe2O3)

f o :

Fraction of oxygen present in Fe2O3

k :

Rate of reduction or rate constant (s−1)

R :

Gas constant (kJ mol−1 K−1)

t :

Time (s)

T :

Temperature (K)

α:

Degree of reduction

References

  1. Dutta S K, and Ghosh A, Metall Mater Trans 25B (1994) 15.

    CAS  Google Scholar 

  2. Ghosh A, in Proc. Int. Conf. on ‘Alternative Routes of Iron and Steelmaking’, Perth, Australia, September 1999, p 71.

  3. Mantovani M C, Takano C, and Buchler P M, Ironmaking Steelmaking 29 (2002) 257.

    Article  CAS  Google Scholar 

  4. Prakash S, Ironmaking Steelmaking 21 (1994) 237.

    CAS  Google Scholar 

  5. Sarkar S B, Ray H S, and Chatterjee I, J Therm Anal 35 (1989) 2461.

    Article  CAS  Google Scholar 

  6. Seaton C E, Foster J S, and Velasco J, Trans Iron Steel Inst Jpn 23 (1983) 490.

    Article  CAS  Google Scholar 

  7. Ansari Q A K, Ahier S J, Singer A R E, Ironmaking Steelmaking 11 (1984) 237.

    CAS  Google Scholar 

  8. Sharma T, Int J Miner Process 39 (1993) 299.

    Article  CAS  Google Scholar 

  9. Huang B H, and Lu W K, Iron Steel Inst Jpn Int 33 (1993) 1055.

    Article  CAS  Google Scholar 

  10. Wang Q, Yang Z, Tian J, Li W, and Sun J, Ironmaking Steelmaking 25 (1998) 443.

    CAS  Google Scholar 

  11. El-Geassy A A, Khedr M H, Nasr M I, and Aly M S, Ironmaking Steelmaking 28 (2001) 237.

    Article  CAS  Google Scholar 

  12. Santos D M, and Maurao M B, Scand J Metall 33 (2004) 229.

    Article  Google Scholar 

  13. Dutta S K, Trans Ind Inst Met 58 (2005) 801.

    CAS  Google Scholar 

  14. Sohn I, and Fruehan R J, Metall Mater Trans 36B (2005) 605.

    CAS  Google Scholar 

  15. Sohn I, and Fruehan R J, Metall Mater Trans 37B (2006) 223.

    CAS  Google Scholar 

  16. Sah R, Characterization of Cold Bonding and Fundamental Studies on Reduction Smelting of Iron Ore-Coal Composite Pellets, Ph D Thesis, Metallurgical and Materials Engineering Department, M.S. University of Baroda, Vadodara, India (2008).

  17. Wen C Y, and Dutta S, in Coal Conversion Technology, (eds) Wen C Y, and Stanley Lee E, Addison-Wesley Publishing Co. Inc., Reading (1979), p. 57.

    Google Scholar 

  18. Smoot L D, and Smith P J, Coal Combustion and Gasification’, vol. 37, Planum Press, New York (1985).

    Google Scholar 

  19. Cypres R, and Soudan-Moinet C, FUEL 60 (1981) 33.

    Article  CAS  Google Scholar 

  20. Cypres R, and Soudan-Moinet C, FUEL 59 (1980) 48.

    Article  CAS  Google Scholar 

  21. Wang Q, Yang Z, Tian J, Li W, and Sun J, Ironmaking Steelmaking 24 (1997) 457.

    Google Scholar 

  22. Biswas A K, Principles of Blast Furnace Ironmaking’, 1st Indian Edition, SBA Publication, Calcutta (1984), p. 136, 220.

  23. Dutta S K, and Ghosh A, ISIJ Int 33 (1994) 1168.

    Article  Google Scholar 

  24. Ghosh A, and Chatterjee A, Iromnaking and Steelmaking (Theory and Practice),, First edition, PHI Learning Pvt. Ltd., New Delhi (2008).

    Google Scholar 

  25. Goswami M C, Prakash S, and Sarkar S B, Steel Research 70 (1999) 41.

    CAS  Google Scholar 

  26. Jiang T, Qui G, Xu J, Zhu D, and Singh R, Direct Reduction of Composite Binder Pellets and Use of DRI, Electrotherm (India) Ltd., Ahmedabad (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sah, R., Dutta, S.K. Kinetic Studies of Iron Ore–Coal Composite Pellet Reduction by TG–DTA. Trans Indian Inst Met 64, 583–591 (2011). https://doi.org/10.1007/s12666-011-0065-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-011-0065-x

Keywords

Navigation