Skip to main content
Log in

The Use of Palm Oil-Based Waste Cooking Oil to Enhance the Production of Polyhydroxybutyrate [P(3HB)] by Cupriavidus necator H16 Strain

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

A Correction to this article was published on 21 March 2018

This article has been updated

Abstract

Waste cooking oil (WCO) is of increasing interest as an inexpensive feedstock to produce biodegradable plastic, poly(3-hydroxybutyrate) [P(3HB)]. In the present study, palm oil-based WCO (PO-WCO) was obtained from nine different locations. Palm oil-based fresh cooking oil (PO-FCO) and PO-WCO were characterised via proximate and physicochemical analysis, prior to being used as carbon sources for the biosynthesis of P(3HB) using Cupriavidus necator H16. It was shown that the free fatty acid, peroxide value, and saturated compounds in all batches of PO-WCO were higher compared to those in the PO-FCO. The cells produced 60–80 wt% P(3HB) with dry cell weight of 14–17 g/L. The weight average molecular weight \((M_{\mathrm{w}})\) was found to be \(1.8 \times 10^{6}\) Da with a polydispersity \((M_{\mathrm{w}}/M_{\mathrm{n}})\) of 2.7 when PO-WCO was used as the carbon source. The PO-WCO was found to be suitable to be used as a sustainable carbon source for cell growth and P(3HB) biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 21 March 2018

    The original version of this article unfortunately contained a mistake. The presentation of Fig. 3 was incorrect. The corrected figure is given below.

  • 21 March 2018

    The original version of this article unfortunately contained a mistake. The presentation of Fig.?3 was incorrect. The corrected figure is given below.

  • 21 March 2018

    The original version of this article unfortunately contained a mistake. The presentation of Fig.?3 was incorrect. The corrected figure is given below.

References

  1. Doi, Y.: Microbial Polyesters. VCH Publishers, Hoboken (1990)

    Google Scholar 

  2. Loo, C.Y.; Sudesh, K.: Polyhydroxyalkanoates: bio-based microbial plastics and their properties. MPJ 2(2), 31–57 (2007)

    Google Scholar 

  3. Park, D.H.; Kim, B.S.: Production of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha from soybean oil. New Biotechnol. 28(6), 719–724 (2011)

    Article  Google Scholar 

  4. Sudesh, K.; Doi, Y.: Molecular design and biosynthesis of biodegradable polyesters. Polym. Adv. Technol. 11, 865–872 (2000)

    Article  Google Scholar 

  5. Rao, U.; Sridhar, R.; Sehgal, P.K.: Biosynthesis and biocompatibility of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) produced by Cupriavidus necator from spent palm oil. Biochem. Eng. J. 49, 13–20 (2010)

    Article  Google Scholar 

  6. Sudesh, K.; Bhubalan, K.; Chuah, J.; Kek, Y.K.; Kamilah, H.; Sridewi, N.; Lee, Y.F.: Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl. Microbiol. Biotechnol. 89, 1373–1386 (2011)

    Article  Google Scholar 

  7. Riedel, S.L.; Bader, J.; Brigham, C.J.; Budde, C.F.; Yusof, Z.Z.; Rha, C.; Sinskey, A.J.: Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol. Bioeng. 109, 74–83 (2012)

    Article  Google Scholar 

  8. Taniguchi, I.; Kagotani, K.; Kimura, Y.: Microbial production of poly(hydroxyalkanoate)s from waste edible oils. Green Chem. 5, 545–548 (2003). https://doi.org/10.1039/b304800b

    Article  Google Scholar 

  9. Brigham, C.J.; Sinskey, A.J.: Applications of polyhydroxyalkanoates in the medical industry. Int. J. Biotechnol. Wellness. Ind. 1, 53–60 (2012)

    Google Scholar 

  10. Lutke-Eversloh, T.; Fischer, A.; Remminghorst, U.; Kawada, J.; Marchessault, R.H.; Bogershausen, A.; Kalwei, M.; Eckert, H.; Reichelt, R.; Liu, S.J.; Steinbüchel, A.: Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Appl. Microbiol. Biotechnol. 98, 1469–1483 (2002)

    Google Scholar 

  11. Anderson, A.J.; Dawes, E.A.: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54(4), 450–472 (1990)

    Google Scholar 

  12. Doi, Y.; Kitamura, S.; Abe, H.: Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28, 4822–4828 (1995)

    Article  Google Scholar 

  13. Bhuwal, A.K.; Singh, G.; Aggarwal, N.K.; Goyal, V.; Yadav, A.: Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int. J. Biomater. 2013, 1–10 (2013)

    Article  Google Scholar 

  14. Chanasit, W.; Hodgson, B.; Sudesh, K.; Umsakul, K.: Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Biosci. Biotechnol. Biochem. 80(7), 1440–1450 (2016)

    Article  Google Scholar 

  15. Gomaa, E.Z.: Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Braz. Arch. Biol. Technol. 57(1), 145–154 (2014)

    Article  Google Scholar 

  16. Sudesh, K.; Abe, H.: Practical Guide to Microbial Polyhydroxyalkanoates. Smithers Rapra, Shrewsbury (2010)

    Google Scholar 

  17. Altaee, N.; El-Hiti, G.A.; Fahdil, A.; Sudesh, K.; Yousif, E.: Screening and evaluation of poly(3-hydroxybutyrate) with Rhodococcus equi using different carbon sources. Arab. J. Sci. Eng. 41, 1–11 (2016). https://doi.org/10.1007/s13369-016-2327-8

    Article  Google Scholar 

  18. Lee, S.Y.; Choi, J.; Wong, H.H.: Recent advances in polyhydroxyalakanoate production by bacterial fermentation: mini-review. Int. J. Biol. Macromol. 25, 31–36 (1999)

    Article  Google Scholar 

  19. Song, J.H.; Jeon, C.O.; Choi, M.H.; Yoon, S.C.; Park, W.: Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. Strain DR2. J. Microbiol. Biotechnol. 18(8), 1408–1415 (2008)

    Google Scholar 

  20. Liu, F.; Li, W.; Ridgway, D.; Gu, T.: Production of poly-ß-hydroxybutyrate on molasses by recombinant Escherichia coli. Biotechnol. Lett. 20, 345–348 (1998)

    Article  Google Scholar 

  21. Akaraonye, E.; Keshavarz, T.; Roy, I.: Production of polyhydroxyalkanoates: the future green materials of choice. J. Chem. Technol. Biotechnol. 85, 732–743 (2010)

    Article  Google Scholar 

  22. Kulkarni, M.G.; Dalai, A.K.: Waste cooking oil-an economical source for biodiesel: a review. Ind. Eng. Chem. Res. 45, 2901–2913 (2006)

    Article  Google Scholar 

  23. UN: Economic and social commission for Western Asia wastewater treatment technologies: a general review. In: United Nations (ed.). Distr. General E/ESCWA/SDPD (2003)

  24. Kahar, P.; Tsuge, T.; Taguchi, K.; Doi, Y.: High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym. Degrad. Stabil. 83, 79–86 (2004)

    Article  Google Scholar 

  25. Verlinden, R.A.J.; Hill, D.J.; Kenward, M.A.; Williams, C.D.; Seget, Z.P.; Radecka, I.K.: Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator. AMB Express 1, 1–8 (2011)

    Article  Google Scholar 

  26. AOAC: Official Methods of Analysis of AOAC International, 17th edn. AOAC International, USA (2000)

  27. Dieffenbacher, A.; Pocklington, W.D.: Standard Methods for the Analysis of Oils, Fats and Derivatives. Blackwell Scientific Publications, Oxford (1992)

    Google Scholar 

  28. Mondello, L.; Tranchida, P.Q.; Dugo, P.; Dugo, G.: Rapid, micro-scale preparation and very fast gas chromatographic separation of cod liver oil fatty acid methyl esters. J. Pharm. Biomed. Anal. 41, 1566–1570 (2006)

    Article  Google Scholar 

  29. Kilcawley, K.N.; Wilkinson, M.G.; Fox, P.F.: Determination of key enzyme activities in commercial peptidase and lipase preparations from microbial or animal sources. Enzyme Microb. Technol. 31, 310–320 (2002)

    Article  Google Scholar 

  30. Budde, C.F.; Riedel, S.L.; Hübner, F.; Risch, S.; Popović, M.K.; Rha, C.; Sinskey, A.J.: Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl. Microbiol. Biotechnol. 89, 1611–1619 (2011)

    Article  Google Scholar 

  31. McDowell, E.M.; Trump, B.F.: Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 100, 405–414 (1976)

    Google Scholar 

  32. Cortinas, L.; Villaverde, C.; Galobart, J.; Baucells, M.D.; Codony, R.; Barroeta, A.C.: Fatty acid content in chicken thigh and breast as affected by dietary polyunsaturation level. Poult. Sci. 83, 1155–1164 (2004)

    Article  Google Scholar 

  33. de Almeida, J.C.; Perassolo, M.S.; Camargo, J.L.; Bragagnolo, N.; Gross, J.L.: Fatty acid composition and cholesterol content of beef and chicken meat in Southern Brazil. Braz. J. Pharm. Sci. 42, 109–117 (2006)

    Google Scholar 

  34. Rule, D.C.; Broughton, K.S.; Shellito, S.M.; Maiorano, G.: Comparison of muscle fatty acid profiles and cholesterol concentrations of bison, beef, cattle, elk, and chicken. J. Anim. Sci. 80, 1202–1211 (2002)

    Article  Google Scholar 

  35. Mittelbach, M.; Enzelsberger, H.: Transesterification of heated rapeseed oil for extending diesel fuel. J. Am. Oil Chem. Soc. 76(5), 545–550 (1999)

    Article  Google Scholar 

  36. Nawar, W.W.: Chemical changes in lipids produced by thermal processing. J. Chem. Ed. 61(4), 299–302 (1984)

    Article  Google Scholar 

  37. Knothe, G.; Dunn, R.O.: Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. J. Am. Oil Chem. Soc. 80(10), 1021–1026 (2003)

    Article  Google Scholar 

  38. Siddique, B.M.; Ahmad, A.; Ibrahim, M.H.; Hena, S.; Rafatullah, M.; Omar, A.K.M.: Physico-chemical properties of blends of palm olein with other vegetable oils. Grasas Aceites (2010). https://doi.org/10.3989/gya.010710

    Google Scholar 

  39. Lertsathapornsuk, V.; Pairintra, R.; Aryusuk, K.; Krisnangkura, K.: Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Process. Technol. 89(12), 1330–1336 (2008)

    Article  Google Scholar 

  40. Tan, C.P.; Che Man, Y.B.: Differential scanning calorimetric analysis of palm oil, palm oil based products and coconut oil: effects of scanning rate variation. Food Chem. 76, 89–102 (2002)

    Article  Google Scholar 

  41. Ong, A.S.H.; Goh, S.H.: Palm oil: a healthful and cost-effective dietary component. Food Nutr. Bull. 23(1), 11–22 (2002)

    Article  Google Scholar 

  42. Martino, L.; Cruz, M.V.; Scoma, A.; Freitas, F.; Bertin, L.; Scandola, M.; Reis, M.A.M.: Recovery of amorphous polyhydroxybutyrate granules from Cupriavidus necator cells grown on used cooking oil. Int. J. Biol. Macromol. 71, 117–123 (2014)

    Article  Google Scholar 

  43. Obruca, S.; Marova, I.; Snajdar, O.; Mravcova, L.; Svoboda, Z.: Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate. Biotechnol. Lett. 32, 1925–1932 (2010)

    Article  Google Scholar 

  44. Cruz, M.V.; Freitas, F.; Paiva, A.; Mano, F.; Dionı’sio, M.; Ramos, A.M.; Reis, M.A.M.: Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnol. 33, 206–215 (2015)

    Article  Google Scholar 

  45. Nawar, W.W.: Chemical changes in lipids produced by thermal processing. J. Chem. Ed. 61(4), 299–302 (1984)

    Article  Google Scholar 

  46. Oliveira, F.C.; Dias, M.L.; Castilho, L.R.; Freire, D.M.G.: Characterization of poly(3-hydroxybutyrate) produced by Cupriavidus necator in solid-state fermentation. Bioresour. Technol. 98, 633–638 (2007)

    Article  Google Scholar 

  47. Motasemi, F.; Ani, F.N.: The production of biodiesel from waste cooking oil using microwave irradiation. J. Mek. 32, 61–72 (2011)

    Google Scholar 

  48. Arroyo, R.; Cuesta, C.; Sanchez-Montero, J.M.; Sanchez-Muniz, F.J.: High performance size exclusion chromatography of palm olein used for frying. Eur. J. Lipid Sci. Technol 97, 292–296 (1995)

    Google Scholar 

  49. Tsuge, T.: Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J. Biosci. Bioeng. 94(6), 579–584 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the community of Teluk Bahang, Penang, Malaysia, for contributing the PO-WCO used in this study. This study was funded in parts by the Division of Industry and Community Network and Short-Term Research Grants (304/Pbiologi/6311070) from Universiti Sains Malaysia (USM). H. Kamilah acknowledges USM Fellowship during the period of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanisah Kamilah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamilah, H., Al-Gheethi, A., Yang, T.A. et al. The Use of Palm Oil-Based Waste Cooking Oil to Enhance the Production of Polyhydroxybutyrate [P(3HB)] by Cupriavidus necator H16 Strain. Arab J Sci Eng 43, 3453–3463 (2018). https://doi.org/10.1007/s13369-018-3118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3118-1

Keywords

Navigation