Skip to main content
Log in

Isolation of Phosphorus-Solubilizing Fungus from Soil to Supplement Biofertilizer

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A number of bacterial and fungal isolates from soil were screened for phosphorus solubilization. One fungal strain was found to be efficient phosphorus solubilizer in Pikovskaya medium. The selected strain was identified as Aspergillus niger based on morphological and microscopic studies. Some important cultural conditions were optimized, and optimal conditions for temperature, glucose, ammonium sulfate and pH were found \({30^{\circ}{\rm C}}\), 20, 2 and 5 g/L, respectively, in 48 h of incubation. The fungal strain produces organic acids as well as phosphatases and phytases that make the medium clear within 48 h by solubilizing the added tricalcium phosphate. The soluble phosphorus concentration of medium decreased after 48 h of incubation, possibly due to the consumption of phosphorus by the fungal mycelium itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schachtman D.P., Reid R.J., Ayling S.M.: Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116, 447–453 (1998)

    Article  Google Scholar 

  2. Morales A., Alvear M., Valenzuela E., Castillo C., Borie F.: Screening, evaluation and selection of phosphate-solubilising fungi as potential biofertiliser. J. Soil Sci. Plant Nutr. 11, 89–103 (2011)

    Article  Google Scholar 

  3. Pawar V.C., Thaker V.S.: Acid phosphatase and invertase activities of Aspergillus niger. Mycoscience 50, 323–330 (2009)

    Article  Google Scholar 

  4. Mehta S., Nautiyal C.S.: An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 43, 51–56 (2001)

    Article  Google Scholar 

  5. Xiao C., Chi R., Li X., Xia M., Xia Z.: Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Appl. Biochem. Biotechnol. 165, 719–727 (2011)

    Article  Google Scholar 

  6. Sanjotha P., Mahantesh P., Patil C.: Isolation and screening of efficiency of phosphate solubilizing microbes. Int. J. Microbiol. Res. 3, 56–58 (2011)

    Article  Google Scholar 

  7. Chang C.H., Yang S.S.: Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour. Technol. 100, 1648–1658 (2009)

    Article  Google Scholar 

  8. Chen Y., Rekha P., Arun A., Shen F., Lai W.A., Young C.: Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34, 33–41 (2006)

    Article  Google Scholar 

  9. Rodriguez H., Fraga R.: Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339 (1999)

    Article  Google Scholar 

  10. Vassilev N., Vassileva M., Bravo V., Ferandez-Serrano M., Nikolaeva I.: Simultaneous phytase production and rock phosphate solubilization by Aspergillus niger grown on dry olive wastes. Ind. Crops Prod. 26, 332–336 (2007)

    Article  Google Scholar 

  11. Xiao C., Zhang H., Fang Y., Chi R.: Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1. Appl. Biochem. Biotechnol. 169, 123–133 (2013)

    Article  Google Scholar 

  12. Fan D., Luo D.Y., Mi Y., Ma X.X., Shang L.: Characteristics of fed-batch cultures of recombinant Escherichia coli containing human-like collagen cDNA at different specific growth rates. Biotechnol. Lett. 27, 865–870 (2005)

    Article  Google Scholar 

  13. Jena S., Rath C.: Effect of environmental and nutritional conditions on phosphatase activity of Aspergillus awamori. Curr. Res. Environ. Appl. Mycol. 4, 45–56 (2014)

    Google Scholar 

  14. Klich, M.A.: Indentification of common Aspergillus species. Centraalbureau voor Schimmelcultures (2002)

  15. Pearson D.: General Methods Determination of Phosphate by the Vanado-Molybdate Colorimetric Method. Churchill Livingstone, Edinburgh (1976)

    Google Scholar 

  16. Violeta N., Trandafir I., Ionica M.E.: HPLC organic acid analysis in different citrus juices under reversed phase conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38, 44–48 (2010)

    Google Scholar 

  17. Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.H.: Ed. 21. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC (2005)

  18. Heinonen J.K., Lahti R.J.: A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem. 113, 313–317 (1981)

    Article  Google Scholar 

  19. Mendes G.O., Dias C.S., Silva I.R., Junior J.I.R., Pereira O.L., Costa M.D.: Fungal rock phosphate solubilization using sugarcane bagasse. World J. Microbiol. Biotechnol. 29, 43–50 (2013)

    Article  Google Scholar 

  20. Achal V., Savant V., Reddy M.S.: Phosphate solubilization by a wild type strain and UV-induced mutants of Aspergillus tubingensis. Soil Biol. Biochem. 39, 695–699 (2007)

    Article  Google Scholar 

  21. Kucey R.: Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Can. J. Soil Sci. 63, 671–678 (1983)

    Article  Google Scholar 

  22. Turan M., Ataoglu N., Sahin F.: Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. J. Sustain. Agri. 28, 99–108 (2006)

    Article  Google Scholar 

  23. Rajankar P., Tambekar D., Wate S.: Study of phosphate solubilization efficiencies of fungi and bacteria isolated from saline belt of Purna river basin. Res. J. Agric. Biol. Sci. 3, 701–703 (2007)

    Google Scholar 

  24. Omar S.: The role of rock-phosphate-solubilizing fungi and vesicular arbusular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J. Microbiol. Biotechnol. 14, 211–218 (1997)

    Article  Google Scholar 

  25. Silva D.M., Luis B.R., Rezende E.F., Fungaro M.H.P., Sartori D., Alves E.: Identification of fungi of the genus Aspergillus section nigri using polyphasic taxonomy. Brazil J. Microbiol. 42, 761–773 (2011)

    Article  Google Scholar 

  26. Meijer M., Houbraken J., Dalhuijsen S., Samson R., Vries R.D.: Growth and hydrolase profiles can be used as characteristics to distinguish Aspergillus niger and other black Aspergilli. Stud. Mycol. 69, 19–30 (2011)

    Article  Google Scholar 

  27. Ashok V., Gomashe S.S.S., Preeti G.: Isolation and identification of phosphate solubilizing fungi from rhizosphere. Int. J. Sci. Innov. Discov. 2, 310–315 (2012)

    Google Scholar 

  28. Bourguet N., Goutx M., Ghiglione J.F., Pujo-Pay G., Mével M., Momzikoff A., Mousseau L., Guigue C., Garcia N., Raimbault P.: Lipid biomarkers and bacterial lipase activities as indicators of organic matter and bacterial dynamics in contrasted regimes at the DYFAMED site, NW Mediterranean. Deep Sea Res. Part II: Top. Stud. Oceanogr. 56, 1454–1469 (2009)

    Article  Google Scholar 

  29. Leong S.L., Hocking A.D., Scott E.S.: Effect of temperature and water activity on growth and ochratoxin A production by Australian Aspergillus carbonarius and A. niger isolates on a simulated grape juice medium. Int. J. Food Microbiol. 110, 209–216 (2006)

    Article  Google Scholar 

  30. Martin J.P.: Use of acid, rose bengal, and streptomycin in the plate method for estimating soil fungi. Soil Sci. 69, 215–232 (1950)

    Article  Google Scholar 

  31. Kim D.S., Godber J.S., Kim H.R.: Culture conditions for a new phytase-producing fungus. Biotechnol. Lett. 21, 1077–1081 (1999)

    Article  Google Scholar 

  32. Syed Q., Nadeem M., Nelofer R.: Enhanced butanol production by mutant strains of Clostridium acetobutylicum in molasses medium. Turk. J. Biochem. 33, 25–30 (2008)

    Google Scholar 

  33. Nopparat C., Jatupornpipat M., Rittiboon A.: Optimization of the phosphate solubilizing fungus, Aspergillus japonicus SA22P3406, in solid state cultivation by response surface methodology. Kasetsart J. Nat. Sci. 43, 172–181 (2009)

    Google Scholar 

  34. Rinu K., Pandey A.: Temperature-dependent phosphate solubilization by cold-and pH-tolerant species of Aspergillus isolated from Himalayan soil. Mycoscience 51, 263–271 (2010)

    Article  Google Scholar 

  35. Gokhale D., Patil S., Bastawde K.: Optimization of cellulase production by Aspergillus niger NCIM 1207. Appl. Biochem. Biotechnol. 30, 99–109 (1991)

    Article  Google Scholar 

  36. Khurshid S., Kashmiri M.A., Quershi Z., Ahmad W.: Optimization of glucose oxidase production by Aspergillus niger. Afr. J. Biotechnol. 10, 1674–1678 (2013)

    Google Scholar 

  37. Gharieb M.M.: Nutritional effects on oxalic acid production and solubilization of gypsum by Aspergillus niger. Mycol. Res. 104, 550–556 (2000)

    Article  Google Scholar 

  38. Seshadri S., Ignacimuthu S., Lakshminarasimhan C.: Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains. Chem. Eng. Commun. 191, 1043–1052 (2004)

    Article  Google Scholar 

  39. Dixon-Hardy J.E., Karamushka V.I., Gruzina T.G., Nikovska G.N., Sayer J.A., Gadd G.M.: Influence of the carbon, nitrogen and phosphorus source on the solubilization of insoluble metal compounds by Aspergillus niger. Mycol. Res. 102, 1050–1054 (1998)

    Article  Google Scholar 

  40. Cerezine P.C., Nahas E., Banzatto D.A.: Soluble phosphate accumulation by Aspergillus niger from fluorapatite. Appl. Microbiol. Biotechnol. 29, 501–505 (1988)

    Article  Google Scholar 

  41. Nahas E., Banzatto D., Assis L.: Fluorapatite solubilization by Aspergillus niger in vinasse medium. Soil Biol. Biochem. 22, 1097–1101 (1990)

    Article  Google Scholar 

  42. Marin S., Sanchis V., Saenz R., Ramos A., Vinas I., Magan N.: Ecological determinants for germination and growth of some Aspergillus and Penicillium spp. from maize grain. J. Appl. Microbiol. 84, 25–36 (1998)

    Article  Google Scholar 

  43. Dara O.D., Wang L., Xu J., Ridgway D., Gu T., Moo-Young M.: Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity. Biochem. Eng. J. 8, 187–193 (2001)

    Article  Google Scholar 

  44. Gera N., Uppaluri R., Sen S., Dasu V.V.: Growth kinetics and production of glucose oxidase using Aspergillus niger NRRL 326. Chem. Biochem. Eng. Q. 22, 315–320 (2008)

    Google Scholar 

  45. Ruijter G.J., Vondervoort P.J., Visser J.: Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145, 2569–2576 (1999)

    Article  Google Scholar 

  46. Nenwani V., Doshi P., Saha T., Rajkumar S.: Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J. Yeast Fungal Res. 1, 9–14 (2010)

    Google Scholar 

  47. Bojinova D., Velkova R., Ivanova R.: Solubilization of Morocco phosphorite by Aspergillus niger. Bioresour. Technol. 99, 7348–7353 (2008)

    Article  Google Scholar 

  48. Xiao C., Chi R., He H., Qiu G., Wang D., Zhang W.: Isolation of phosphate-solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl. Biochem. Biotechnol. 159, 330–342 (2009)

    Article  Google Scholar 

  49. Chelius M.K., Wodzinski R.J.: Strain improvement of Aspergillus niger for phytase production. Appl. Microbiol. Biotechnol. 41, 79–83 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubina Nelofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelofer, R., Syed, Q., Nadeem, M. et al. Isolation of Phosphorus-Solubilizing Fungus from Soil to Supplement Biofertilizer. Arab J Sci Eng 41, 2131–2138 (2016). https://doi.org/10.1007/s13369-015-1916-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1916-2

Keywords

Navigation