Skip to main content
Log in

Improved Lactic Acid Production by In Situ Removal of Lactic Acid During Fermentation and a Proposed Scheme for Its Recovery

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Extractive fermentation with 155.8 g/L initial glucose and 364 g of anion exchange resin yielded a 1.2-fold increase in total lactate produced and a 5.9-fold increase in productivity compared with standard batch fermentation at the same glucose concentration. The addition of resin also served as a pH control strategy. Elution of the resin-bound lactate using 1 M HCl at 0.1 bed volume/min resulted in complete recovery of lactate. Further extraction of the eluted lactate and lactate in fermentation broth was conducted with reactive extraction using trioctylamine in octanol. The extraction also provided partial purification of the product, as protein from fermentation broth did not migrate to the extracted solution with the lactate. The recovery of lactate was up to 70 % of the total lactate produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Rahman M.A., Tashiro Y., Sonomoto K.: Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 31, 877–902 (2013)

    Article  Google Scholar 

  2. Martinez F.A.C., Balciunas E.M., Salgado J.M., González J.M.D., Converti A., Oliveira R.P.d.S.: Lactic acid properties, applications and production: a review. Trends Food Sci. Technol. 30, 70–83 (2013)

    Article  Google Scholar 

  3. Wee Y.-J., Kim J.-N., Ryu H.-W.: Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44, 163–172 (2006)

    Google Scholar 

  4. Datta R., Henry M.: Lactic acid: recent advances in products, processes and technologies—a review. J. Chem. Technol. Biotechnol. 81, 1119–1129 (2006)

    Article  Google Scholar 

  5. Datta R., Tsai S.P., Bonsignore P., Moon S.H., Frank J.R.: Technology and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol. Rev. 16, 221–231 (1995)

    Article  Google Scholar 

  6. Groot W.J., Borén T.: Life cycle assessment of the manufacture of lactide and PLA biopolymers from sugarcane in Thailand. Int. J. Life Cycle Assess. 15, 970–984 (2010)

    Article  Google Scholar 

  7. López-Garzón C.S., Straathof A.J.J.: Recovery of carboxylic acids produced by fermentation. Biotechnol. Adv. 32(5), 873–904 (2014)

    Article  Google Scholar 

  8. Joglekar H.G., Rahman I., Babu S., Kulkarni B.D., Joshi A.: Comparative assessment of downstream processing options for lactic acid. Sep. Purif. Technol. 52, 1–17 (2006)

    Article  Google Scholar 

  9. Pal P., Sikder J., Roy S., Giorno L.: Process intensification in lactic acid production: a review of membrane based processes. Chem. Eng. Process. 48, 1549–1559 (2009)

    Article  Google Scholar 

  10. Boonmee M., Leksawasdi N., Bridge W., Rogers P.L.: Batch and continuous culture of Lactococcus lactis NZ133: experimental data and model development. Biochem. Eng. J. 14, 127–135 (2003)

    Article  Google Scholar 

  11. Wang C., Li Q., Wang D., Xing J.: Improving the lactic acid production of Actinobacillus succinogenes by using a novel fermentation and separation integration system. Process Biochem. 49(8), 1245–1250 (2014)

    Article  Google Scholar 

  12. Boontawan P., Kanchanathawee S., Boontawan A.: Extractive fermentation of L-(+)-lactic acid by Pediococcus pentosaceus using electrodeionization (EDI) technique. Biochem. Eng. J. 54, 192–199 (2011)

    Article  Google Scholar 

  13. Wasewar K.L., Yawalkar A.A., Moulijn J.A., Pangarkar V.G.: Fermentation of glucose to lactic acid coupled with reactive extraction: a review. Ind. Eng. Chem. Res. 43, 5969–5982 (2004)

    Article  Google Scholar 

  14. Gao M.-T., Shimamura T., Ishida N., Nagamori E., Takahashi H., Umenoto S., Omasa T., Ohtake H.: Extractive lactic acid fermentation with tri-n-decylamine as the extractant. Enzyme Microb. Technol. 44, 350–354 (2009)

    Article  Google Scholar 

  15. Ye K., Jin S., Shimizu K.: Performance improvement of lactic acid fermentation by multistage extractive fermentation. J. Ferment. Bioeng. 81, 240–246 (1996)

    Article  Google Scholar 

  16. Lu Z., Wei M., Yu L.: Enhancement of pilot scale production of L(+)-lactic acid by fermentation coupled with separation using membrane reactor. Process Biochem. 47, 410–415 (2012)

    Article  Google Scholar 

  17. Zhang Y., Chen X., Qi B., Luo J., Shen F., Su Y., Khan R., Wan Y.: Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions. Bioresour. Technol. 163, 160–166 (2014)

    Article  Google Scholar 

  18. Sikder J., Chakraborty S., Pal P., Drioli E., Bhattacharjee C.: Purification of lactic acid from microfiltrate fermentation broth by cross-flow nanofiltration. Biochem. Eng. J. 69, 130–137 (2012)

    Article  Google Scholar 

  19. Min-tian G., Hirata M., Koide M., Takanashi H., Hano T.: Production of L-lactic acid by electrodialysis fermentation (EDF). Process Biochem. 39, 1903–1907 (2004)

    Article  Google Scholar 

  20. Wang X., Wang Y., Zhang X., Feng H., Xu T.: In-situ combination of fermentation and electrodialysis with bipolar membranes for the production of lactic acid: continuous operation. Bioresour. Technol. 147, 442–448 (2013)

    Article  Google Scholar 

  21. Boonmee M., Leksawasdi N., Bridge W., Rogers P.L.: Electrodialysis for lactate removal in the production of the dairy starter culture Lactococcus lactis NZ133. Int. J. Food Sci. Technol. 42, 567–572 (2007)

    Article  Google Scholar 

  22. Ataei S.A., Vasheghani-Farahani E.: In situ separation of lactic acid from fermentation broth using ion exchange resins. J. Ind. Microbiol. Biotechnol. 35, 1229–1233 (2008)

    Article  Google Scholar 

  23. Jianlong W., Xianghua W., Ding Z.: Production of citric acid from molasses integrated with in-situ product separation by ion-exchange resin adsorption. Bioresour. Technol. 75, 231–234 (2000)

    Article  Google Scholar 

  24. Van’t Hul J.S., Gibbons W.R.: Neutralization/recovery of lactic acid from Lactococcus lactis: effects on biomass, lactic acid, and nisin production. World J. Microbiol. Biotechnol. 13, 527–532 (1997)

    Article  Google Scholar 

  25. Yu P.-L., Dunn N.W., Kim W.S.: Lactate removal by anionic-exchange resin improves nisin production by Lactococcus lactis. Biotechnol. Lett. 24, 59–64 (2002)

    Article  Google Scholar 

  26. Liu B., Hui J., Cheng Y-Q., Zhang X.: Extractive fermentation for enhanced production of thailandepsin A from Burkholderia thailandensis E264 using polyaromatic adsorbent resin Diaion HP-20. J. Ind. Microbiol. Biotechnol. 39, 767–776 (2012)

    Article  Google Scholar 

  27. Phillips T., Chase M., Wagner S., Renzi C., Powell M., DeAngelo J., Michels P.: Use of in situ solid-phase adsorption in microbial natural product fermentation development. J. Ind. Microbiol. Biotechnol. 40, 411–425 (2013)

    Article  Google Scholar 

  28. Jianlong W., Ping L., Ding Z.: Extractive fermentation of lactic acid by immobilized Lactobacillus casei using ion-exchange resin. Biotechnol. Tech. 8, 905–908 (1994)

    Article  Google Scholar 

  29. John R.P., Nampoothiri K.M., Pandey A.: L(+)-Lactic acid recovery from cassava bagasse based fermented medium using anion exchange resins. Braz. Arch. Biol. Technol. 51, 1241–1248 (2008)

    Article  Google Scholar 

  30. Moldes A.B., Alonso J.L., Parajó J.C.: Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess Biosyst. Eng. 25, 357–363 (2003)

    Article  Google Scholar 

  31. Raya-Tonetti G., Córdoba P., Bruno-Bárcena J., Sin͂eriz F., Perotti N.: Fluidized bed ion exchange for improving purification of lactic acid from fermentation. Biotechnol. Tech. 13, 201–205 (1999)

    Article  Google Scholar 

  32. Hong Y.K., Hong W.L., Han D.H.: Application of reactive extraction to recovery of carboxylic acids. Biotechnol. Bioprocess Eng. 6, 386–394 (2001)

    Article  Google Scholar 

  33. Yankov D., Molinier J., Albet J., Malmary G., Kyuchoukov G.: Lactic acid extraction from aqueous solutions with tri-n-octylamine dissolved in decanol and dodecane. Biochem. Eng. J. 21, 63–71 (2004)

    Article  Google Scholar 

  34. Krzyzaniak A., Schuur B., de Hann A.B.: Equilibrium studies on lactic acid extraction with N,N-didodecylpyridin-4-amine (DDAP) extractant. Chem. Eng. Sci. 109, 236–243 (2014)

    Article  Google Scholar 

  35. Uslu H., Kıbaşlar Ş.İ.: Effect of temperature and initial acid concentration on the reactive extraction of carboxylic acids. J. Chem. Eng. Data 58, 1822–1826 (2013)

    Article  Google Scholar 

  36. Heyberger A., Procházka J., Volaufova E.: Extraction of citric acid with tertiary amine—third-phase formation. Chem. Eng. Sci. 53, 515–521 (1998)

    Article  Google Scholar 

  37. Wasewar K.L.: Reactive extraction: an intensifying approach for carboxylic acid separation. Int. J. Chem. Eng. Appl. 3, 249–255 (2012)

    Google Scholar 

  38. Harington T., Hossain Md.M.: Extraction of lactic acid into sunflower oil and its recovery into an aqueous solution. Desalination 218, 287–296 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallika Boonmee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonmee, M., Cotano, O., Amnuaypanich, S. et al. Improved Lactic Acid Production by In Situ Removal of Lactic Acid During Fermentation and a Proposed Scheme for Its Recovery. Arab J Sci Eng 41, 2067–2075 (2016). https://doi.org/10.1007/s13369-015-1824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1824-5

Keywords

Navigation