Skip to main content
Log in

Density Functional Theory Study on the Identification of Pd(Me-Xanthate)2

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study dealing with the identification of a title compound, Pd(Me-Xanthate)2, by means of quantum chemical calculations is composed of two parts: experiment and theoretical. For the first part, the molecule was synthesized and a Fourier transformation-infrared spectra (in the region 400–4,000 cm−1) was experimentally performed. For second part, the most optimized geometry of the molecule was determined and the optimized molecular structures, vibrational frequencies, corresponding vibrational assignments and Ultraviolet–visible spectra of the molecule in the ground state were evaluated using density functional theory with the standard BPV86 /3-21G method and basis set combination for the first time. The bond lengths and angles obtained were compared with experimental evidences. Comparisons of theoretical and experimental data exhibit good correlation. Moreover, the obtained vibration frequencies were compared with available experimental results and scaling factors between experimental results and theoretical data were calculated to be between 0.84 and 0.97. In addition, not only were frontier molecular orbitals (FMO) and molecular electrostatic potential (MEP) simulated but also the transition state and energy band gap were investigated. Infrared intensities and Raman activities were also reported for the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rao S.R.: Xanthates and Related Compounds. Marcel Dekker, New York (1971)

    Google Scholar 

  2. Jean-Baptiste L., Yemets S., Legay R., Lequeux T.: Synthesis of 2,3-trans disubstituted tetrahydrofurans through sequential xanthate radical addition–substitution reactions. J. Org. Chem. 71, 2352–2359 (2006)

    Article  Google Scholar 

  3. Shahzadi S., Ali S., Jabeen R., Khosa M.K.: [Pd(Me-Xanthate)(2)]: synthesis, characterization, and X-ray structure. Turk. J. Chem. 33, 307–312 (2009)

    Google Scholar 

  4. Giese B.: Syntheses with radicals-c-c bond formation via organotin and organomercury compounds. Angew. Chem. Int. Ed. Engl. 24, 553–565 (1985)

    Article  Google Scholar 

  5. Ryu I., Sonoda N.: Free-radical carbonylations: then and now. Chem. Int. Ed. Engl. 35, 1050–1066 (1996)

    Article  Google Scholar 

  6. Fu F.L., Chen R.M., Xiong Y.: Application of a novel strategy—coordination polymerization precipitation to the treatment of Cu2+-containing wastewaters. Sep. Purif. Techonol. 52, 383–393 (2006)

    Google Scholar 

  7. Kasim R.K.: Forward/Reverse dc bias or ac electroluminescence in poly(p-phenylene vinylene) prepared via sulfonium-salt and xanthate routes. Synth. Met. 85, 1291–1297 (1997)

    Article  Google Scholar 

  8. Bricka, R.M.: Investigation and evaluation of the performance of solidified cellulose and starch xanthate heavy metal sludges. US Army Corps of Engineers Waterway Experiment Station Technical Report EL-88-5, Vicksburg (1988)

  9. Wing R.E., Swanson C.L., Doane W.M., Russell C.R.: Heavy-metal removal with starch xanthatecationic polymer complex. J. Water Pollut. Control Fed. 46, 2043–2047 (1974)

    Google Scholar 

  10. Huang C.F., Nicolay R., Kwak Y., Chang F.C., Matyjaszewski K.: homopolymerization and block copolymerization of N-vinylpyrrolidone by ATRP and RAFT with haloxanthate inifers. Macromolecules 42, 8198–8210 (2009)

    Article  Google Scholar 

  11. Jamir L., Yella R., Patel B.K.: Efficient one-pot preparation of bisalkyl xanthogen disulfides from alcohols. J. Sulfur Chem. 30, 128–134 (2009)

    Article  Google Scholar 

  12. Sasseville D., Al-Sowaidi M., Moreau L.: Cross-reactions between xanthates and rubber additives. Dermatitis 18, 150–154 (2007)

    Article  Google Scholar 

  13. Ravikumar C., Joe I.H., Jayakumar V.S.: Charge transfer interactions and nonlinear optical properties of push-pull chromophore benzaldehyde phenylhydrazone: a vibrational approach. Chem. Phys. Lett. 460, 552–558 (2008)

    Article  Google Scholar 

  14. Sun Y.X., Hao Q.L., Lu L.D., Wang X., Yang X.J.: Vibrational spectroscopic study of o-,m- and p-hydroxybenzylideneaminoantipyrines. Spectrochim. Acta A 75, 203–211 (2010)

    Article  Google Scholar 

  15. Porento M., Hirva P.: A theoretical study on the interaction of sulfhydryl surfactants with a covellite(001) surface. Surf. Sci. 555, 75–82 (2004)

    Article  Google Scholar 

  16. Claes L., Francois J.P., Deleuze M.S.: Molecular packing of oligomer chains of poly(p-phenylene vinylene). Chem. Phys. Lett. 339, 216–222 (2001)

    Article  Google Scholar 

  17. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta J.E. Jr., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford (2009)

  18. Frisch A., Dennington R.D. II, Keith T.A., Millam J., Nielsen A.B., Holder A.J., Hiscocks J.: Gauss View version 4.1 User Manual. Gaussian Inc., Wallingford (2007)

    Google Scholar 

  19. Perdew J.P., Burke K., Ernzerhof M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  Google Scholar 

  20. Binkley J.S., Pople J.A., Hehre W.J.: Self-consistent molecular-orbital methods. 21. Small split-valence basis-sets for 1st-row elements. J. Am. Chem. Soc. 102, 939–947 (1980)

    Article  Google Scholar 

  21. Wilson E.B., Decius J.C., Cross P.C.: Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. Dover, New York (1980)

    Google Scholar 

  22. Krishnakumar V., Prabavathi N.: Structure and vibrational frequencies of 6,7-dimethoxy-1,4-dihydro-1,3-quinoxalinedione based on density functional theory calculations: The role of pi-electron conjugation and back-donation. Spectrochim. Acta A 77, 238–247 (2010)

    Article  Google Scholar 

  23. Roeges N.P.G.: A Guide to Complete Interpretation of Infrared Spectra of Organic Structures. Weinheim, Wiley-VCH (1994)

    Google Scholar 

  24. Klots T.D., Collier W.B.: Heteroatom derivatives of indene.3. Vibrational-spectra of benzoxazole, benzofuran, and indole. Spectrochim. Acta A 51(8), 1291–1316 (1995)

    Article  Google Scholar 

  25. Coates J.: Interpretation of Infrared Spectra: A Practical Approach. Wiley-VCH, Chichester (2000)

    Google Scholar 

  26. Hehre W.J., Ditchfield R., Pople J.A.: Self-consistent molecular-orbital methods. 12. Further extensions of gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56, 2257–2261 (1972)

    Article  Google Scholar 

  27. Sundaraganesan N., Ananda B., Meganathana C., Joshuaa B.D.: FT-IR, FT-Raman spectra and ab initio HF, DFT vibrational analysis of 2,3-difluoro phenol. Spectrochim. Acta A 68, 561–566 (2007)

    Article  Google Scholar 

  28. Arjunan V., Mohan S., Ravindran P., Mythili C.V.: Vibrational spectroscopic investigations, ab Initio and DFT studies on 7-bromo-5-chloro-8-hydroxyquinoline. Spectrochim. Acta A 72, 783–788 (2009)

    Article  Google Scholar 

  29. Arslan H., Alguel O.: Vibrational spectrum and assignments of 2-(4-methoxyphenyl)-1 H-benzo[d]imidazole by ab initio Hartree-Fock and density functional methods. Spectrochim. Acta A 70, 109–116 (2008)

    Article  Google Scholar 

  30. Iqbal K., Owen N.L., Sheridan J.: The rotational and vibrational-spectra, structure and dipole-moment of 1,3-dioxole-2-thione. J. Mol. Struct. 64, 137–147 (1980)

    Article  Google Scholar 

  31. Iqbal K., Owen N.L.: The vibrational-spectrum of 1,3-dithiole-2-thione. J. Mol. Struct. 71, 91–95 (1981)

    Article  Google Scholar 

  32. Wang B.L.X., Andrews L.: Infrared spectra and density functional theory calculations of group 10 transition metal sulfide molecules and complexes. J. Phys. Chem. A 113, 3336–3343 (2009)

    Article  Google Scholar 

  33. Buyukuslu H., Akdogan M., Yildirim G., Parlak C.: Ab initio hartree-fock and density functional theory study on characterization of 3-(5-methylthiazol-2-yldiazenyl)-2-phenyl-1 h-indole. Spectrochim. Acta A 75, 1362–1369 (2010)

    Article  Google Scholar 

  34. Gece G.: The use of quantum chemical methods in corrosion inhibitor studies. Corros. Sci. 50, 2981–2992 (2008)

    Article  Google Scholar 

  35. Fukui K.: Theory of Orientation and Stereoselection. Springer, Berlin (1975)

    Google Scholar 

  36. Fukui K.: Role of frontier orbitals in chemical reactions. Science 218, 747–754 (1987)

    Article  Google Scholar 

  37. Lewis D.F.V., Ioannides C., Parke D.V.: Interaction of a series of nitriles with the alcohol-inducible isoform of P450-computer-analysis of structure-activity-relationships. Xenobiotica 24, 401–408 (1994)

    Article  Google Scholar 

  38. Ozdemir N., Eren B., Dincer M., Bekdemir Y.: Experimental and ab initio computational studies on 4-(1Hbenzo[d]imidazol-2-yl)-N,N-dimethylaniline. Mol. Phys. 108, 13–24 (2010)

    Article  Google Scholar 

  39. Politzer P., Murray J.S.: The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 108, 134–142 (2002)

    Article  Google Scholar 

  40. Luque F.J., Lopez J.M., Orozco M.: Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theor. Chem. Acc. 103, 343–345 (2000)

    Google Scholar 

  41. Okulik N., Joubert A.H.: Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs. Internet Electron. J. Mol. Des. 4, 17–30 (2005)

    Google Scholar 

  42. Dhas D.A., Joe I.H., Roy S.D.D., Freeda T.H.: DFT computations and spectroscopic analysis of a pesticide: Chlorothalonil. Spectrochim. Acta A 77(1), 36–44 (2010)

    Article  Google Scholar 

  43. Bauernschmitt R., Ahlrichs R.: Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454–464 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yildirim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koca, M., Yildirim, G., Kirilmis, C. et al. Density Functional Theory Study on the Identification of Pd(Me-Xanthate)2 . Arab J Sci Eng 37, 1283–1291 (2012). https://doi.org/10.1007/s13369-012-0251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0251-0

Keywords

Navigation