Skip to main content
Log in

Characterization of a 5HS-7DS.7DL wheat-barley translocation line and physical mapping of the 7D chromosome using SSR markers

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

A spontaneous wheat-barley translocation line was previously detected in the progenies of the Mv9kr1 × ‘Igri’ wheat-barley hybrid and the translocation was identified as 5HS-7DS.7DL. Multicolor genomic in situ hybridization (mcGISH) with D and H genomic DNA probes and three-color fluorescence in situ hybridization (FISH) with repetitive DNA probes (Afa-family, pSc119.2, and pTa71) were performed to characterize the rearranged chromosome. The effect of 5HS and the deleted 7DS fragment on the morphological traits (plant height, fertility, yield, and spike characteristics) of wheat was assessed. Despite the non-compensating nature of the translocation, the plants showed good viability. The aim of the study was to physically localize SSR markers to the telomeric and subtelomeric regions of the 7DS chromosome arm. Of the 45 microsatellite markers analyzed, ten (Xbarc0184, Xwmc0506, Xgdm0130, Xgwm0735, Xgwm1258, Xgwm1123, Xgwm1250, Xgwm1055, Xgwm1220, and Xgwm0635) failed to amplify any 7DS-specific fragments, signaling the elimination of a short chromosome segment in the telomeric region. The breakpoint of the 5HS-7DS.7DL translocation appeared to be more distal than that of reported deletion lines, which provides a new physical landmark for future deletion mapping studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bryan GJ, Collins AJ, Stephenson P, Orry A, Smith JB, Gale MD (1997) Isolation and characterisation of microsatellites from hexaploid bread wheat. Theor Appl Genet 94:557–563. doi:10.1007/s001220050451

    Article  CAS  Google Scholar 

  • Castro AM, Vasicek A, Ellerbrook C, Giménez DO, Tocho E, Tacaliti MS, Clúa A, Snape JW (2004) Mapping quantitative trait loci in wheat for resistance against greenbug and Russian wheat aphid. Plant Breed 123:361–365. doi:10.1111/j.1439-0523.2004.00995.x

    Article  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504. doi:10.1007/BF00290833

    Article  CAS  Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85:784–792. doi:10.1007/BF00225020

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469. doi:10.1139/g87-081

    Article  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13. doi:10.1016/0003-2697(83)90418-9

    Article  PubMed  CAS  Google Scholar 

  • Finch RA (1983) Tissue-specific elimination of alternative whole parental genomes in one barley hybrid. Chromosoma 88:386–393. doi:10.1007/BF00285861

    Article  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol II: genomics applications in crops. Springer, Dordrecht, pp 1–24

    Chapter  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185. doi:10.1023/A:1003910819967

    Article  CAS  Google Scholar 

  • Gupta P, Balyan H, Edwards K, Isaac P, Korzun V, Röder M, Gautier M-F, Joudrier P, Schlatter A, Dubcovsky J, De la Pena R, Khairallah M, Penner G, Hayden M, Sharp P, Keller B, Wang R, Hardouin J, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422. doi:10.1007/s00122-002-0865-9

    Article  PubMed  CAS  Google Scholar 

  • Gustafson JP, Butler E, McIntyre CL (1990) Physical mapping of a low-copy DNA sequence in rye (Secale cereale L.). Proc Natl Acad Sci USA 87:1899–1902. doi:10.1073/pnas.87.5.1899

    Article  PubMed  CAS  Google Scholar 

  • Hickey LT, Lawson W, Platz GJ, Dieters M, Franckowiak J (2012) Origin of leaf rust adult plant resistance gene Rph20 in barley. Genome 55:396–399. doi:10.1139/g2012-022

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Aranyi NR, Molnár-Láng M (2010) Characterization of wheat-barley introgression lines for drought tolerance. Acta Agron Hung 58:211–218. doi:10.1556/AAgr.58.2010.3.3

    Article  Google Scholar 

  • Hohmann U, Endo TR, Gill KS, Gill BS (1994) Comparison of genetic and physical maps of group 7 chromosomes from Triticum aestivum L. Mol Gen Genet 245:644–653. doi:10.1007/BF00282228

    Article  PubMed  CAS  Google Scholar 

  • Islam AKRM, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174. doi:10.1038/hdy.1981.24

    Article  Google Scholar 

  • Koba T, Handa T, Shimada T (1991) Efficient production of wheat-barley hybrids and preferential elimination of barley chromosomes. Theor Appl Genet 81:285–292. doi:10.1007/BF00228665

    Article  Google Scholar 

  • Kruppa K, Türkösi E, Szakács É, Cseh A, Molnár-Láng M (2012) Development and identification of a 4HL.5DL wheat/barley centric fusion using GISH, FISH and SSR markers. Cereal Res Commun. pp 1–9. doi:10.1556/CRC.2012.0038

  • Leitch AR, Schwarzacher T, Jackson D, Leitch IJ (1994) In situ hybridization: a practical guide. BIOS Scientific Publishers Limited, Oxford, UK, pp 90–108

    Google Scholar 

  • Linde-Laursen I, von Bothmer R (1988) Elimination and duplication of particular Hordeum vulgare chromosomes in aneuploid interspecific Hordeum hybrids. Theor Appl Genet 76:897–908. doi:10.1007/BF00273679

    Article  Google Scholar 

  • Liu XM, Smith CM, Friebe BR, Gill BS (2005) Molecular mapping and allelic relationships of Russian wheat aphid-resistance genes. Crop Sci 45:2273–2280. doi:10.2135/cropsci2004.0704

    Article  CAS  Google Scholar 

  • Lukaszewski AJ, Curtis CA (1993) Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor Appl Genet 86:121–127. doi:10.1007/BF00223816

    Article  CAS  Google Scholar 

  • McIntosh RA (1992) Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathol 41:523–527. doi:10.1111/j.1365-3059.1992.tb02450.x

    Article  Google Scholar 

  • Miller CA, Altinkut A, Lapitan NLV (2001) A microsatellite marker for tagging Dn2, a wheat gene conferring resistance to the Russian wheat aphid. Crop Sci 41:1584–1589

    Article  CAS  Google Scholar 

  • Molnár-Láng M, Linc G, Logojan A, Sutka J (2000) Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). Genome 43:1045–1054. doi:10.1139/gen-43-6-1045

    PubMed  Google Scholar 

  • Molnár-Láng M, Novotny C, Linc G, Nagy ED (2005) Changes in the meiotic pairing behaviour of a winter wheat-winter barley hybrid maintained for a long term in tissue culture, and tracing the barley chromatin in the progeny using GISH and SSR markers. Plant Breed 124:247–252. doi:10.1111/j.1439-0523.2005.01097.x

    Article  Google Scholar 

  • Molnár-Láng M, Kruppa K, Cseh A, Bucsi J, Linc G (2012) Identification and phenotypic description of new wheat–six-rowed winter barley disomic additions. Genome 55:302–311. doi:10.1139/G2012-013

    Article  PubMed  Google Scholar 

  • Nagy ED, Molnár-Láng M, Linc G, Láng L (2002) Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45:1238–1247. doi:10.1139/g02-068

    Article  PubMed  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697. doi:10.1139/g00-042

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrels ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333. doi:10.1007/BF00288605

    Article  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998a) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Röder MS, Korsun V, Gill BS, Ganal MW (1998b) The physical mapping of microsatellite markers in wheat. Genome 41:278–283. doi:10.1139/g98-009

    Article  Google Scholar 

  • Röder MS, Huang XQ, Ganal MW (2004) Wheat microsatellites in plant breeding—potential and implications. In Lörz H, Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Vol 55, biotechnology in agriculture and forestry. Springer, Berlin, Heidelberg, pp 255–266

    Google Scholar 

  • Saeki K, Miyazaki C, Hirota N, Saito A, Ito K, Konishi T (1999) RFLP mapping of BaYMV resistance gene rym3 in barley (Hordeum vulgare). Theor Appl Genet 99:727–732. doi:10.1007/s001220051290

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Gupta AK (1991) Genes for leaf rust resistance in Indian and Pakistani wheats tested with Mexican pathotypes of Puccinia recondita tritici. Euphytica 57:27–36. doi:10.1007/BF00040475

    Google Scholar 

  • Singh RP (1992) Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci 32:874–878. doi:10.2135/cropsci1992.0011183X003200040008x

    Article  Google Scholar 

  • Singh RP (1993) Genetic association of gene Bdv1 for tolerance to Barley Yellow Dwarf Virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis 77:1103–1106. doi:10.1094/PD-77-1103

    Article  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. doi:10.1007/s00122-004-1740-7

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25. doi:10.1007/s10142-004-0106-1

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735. doi:10.1007/s00122-005-2058-9

    Article  PubMed  CAS  Google Scholar 

  • Stephenson P, Bryan G, Kirby J, Collins A, Devos K, Busso C, Gale M (1998) Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97:946–949. doi:10.1007/s001220050975

    Article  CAS  Google Scholar 

  • Szakács É, Molnár-Láng M (2010) Identification of new winter wheat–winter barley addition lines (6HS and 7H) using fluorescence in situ hybridization and the stability of the whole ‘Martonvásári 9 kr1’–‘Igri’ addition set. Genome 53:35–44. doi:10.1139/G09-085

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  PubMed  CAS  Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311. doi:10.1073/pnas.89.23.11307

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. doi:10.1093/nar/18.22.6531

    Article  PubMed  CAS  Google Scholar 

  • Yanaka M, Takata K, Terasawa Y, Ikeda TM (2011) Chromosome 5H of Hordeum species involved in reduction in grain hardness in wheat genetic background. Theor Appl Genet 123:1013–1018. doi:10.1007/s00122-011-1643-3

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded from the Agrisafe program (EU-FP7-REGPOT 2007–1), the Hungarian National Research Fund (K104382), and from the TÁMOP project (4.2.2.A-11/1/KONV-2012-0064). The authors gratefully acknowledge the excellent technical assistance of A. Heber (IPK-Gatersleben, Germany), and J. Bucsi and F. Tóth (MTA ATK, Hungary). Thanks are due to B. Hooper for revising the manuscript linguistically.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márta Molnár-Láng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruppa, K., Sepsi, A., Szakács, É. et al. Characterization of a 5HS-7DS.7DL wheat-barley translocation line and physical mapping of the 7D chromosome using SSR markers. J Appl Genetics 54, 251–258 (2013). https://doi.org/10.1007/s13353-013-0152-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-013-0152-2

Keywords

Navigation