Skip to main content

Advertisement

Log in

Formulation and development of di-dependent microparticulate system for colon-specific drug delivery

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the third most common cancer globally and the second most common cause of cancer-related deaths. Site-specific delivery of drugs leads to an increase in the availability of drugs at the targeted region. The objective of the present investigation was to develop a dually functional microparticulate colon-targeted drug delivery system of meloxicam for potential application in the prophylaxis of colorectal cancer. Chitosan microspheres were prepared by using emulsification–chemical cross-linking technique. Formulation parameters studied include chitosan concentration, drug to polymer ratio, agitation speed, emulsifier concentration, quantity of cross-linking agent and time for cross-linking. In vitro evaluation of microspheres revealed premature release of drug in the upper part of gastrointestinal tract. Since coating of microspheres is difficult to accomplish (with reproducible results), they were compacted to tablets. Enteric coating of tableted microspheres was achieved using Eudragit® S100. In vitro evaluation and SEM studies depict that the microspheres remain intact during compression process. The developed system was further evaluated for in vivo pharmacokinetic and roentgenography studies. In vivo pharmacokinetic evaluation in rabbits reveal that the onset of drug absorption from the coated tableted microspheres (T lag time = 4.67 ± 0.58 h) was significantly delayed compared to uncoated tableted microspheres. In vivo roentgenographic study revealed that the system remained intact, until it reaches to the colonic region (5 h). Thus, from the results of the study, it can be revealed that the developed system could serve as a potential tool for efficient delivery of drug to the colonic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Patel MM. Drug delivery: oral colon-specific. In: Swarbrick J, editor. Encyclopedia of pharmaceutical science and technology. UK: Taylor & Francis Group; 2013. p. 1091–121.

    Google Scholar 

  2. Ashford M, Fell JT, Attwood D, Sharma H, Woodhead PJ. An in vivo investigation into the suitability of pH-dependent polymers for colonic targeting. Int J Pharm. 1993;95:193–9.

    Article  CAS  Google Scholar 

  3. Ashford M, Fell JT, Attwood D, Woodhead PJ. An in-vitro investigation into the suitability of pH dependent polymers for colonic targeting. Int J Pharm. 1993;91:241–5.

    Article  CAS  Google Scholar 

  4. McConnell EL, Short MD, Basit AW. An in vivo comparison of intestinal pH and bacteria as physiological trigger mechanisms for colonic targeting in man. J Control Release. 2008;130:154–60.

    Article  CAS  PubMed  Google Scholar 

  5. Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986;27:886–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee WW, Wilson CG, Mukherji G. Time-dependent systems for colonic delivery. In: Rathbone MJ, Hadgraft J, Roberts MS, editors. Modified-release drug delivery technology. New York: Marcel Dekker; 2003. p. 243–8.

    Google Scholar 

  7. Matsuda KI, Takaya T, Shimoji F, Muraoka M, Yoshikawa M, Takada K. Effect of food intake on the delivery of fluorescein as a model drug in colon delivery capsule after oral to beagle dogs. J Drug Target. 1996;4:59–67.

    Article  CAS  PubMed  Google Scholar 

  8. Ji C, Xu H, Wu W. In vitro evaluation and pharmacokinetics in dogs of guar gum and Eudragit® FS30D-coated colon-targeted pellets of indomethacin. J Drug Target. 2007;15:123–31.

    Article  CAS  PubMed  Google Scholar 

  9. Krishnaiah YS, Veer Raju P, Dinesh Kumar B, Bhaskar P, Satyanarayana V. Development of colon targeted drug delivery systems for mebendazole. J Control Release. 2001;77:87–95.

    Article  CAS  PubMed  Google Scholar 

  10. Tuğcu-Demiröz F, Acartürk F, Takka S, Konuş-Boyunağa O. In-vitro and in-vivo evaluation of mesalazine–guar gum matrix tablets for colonic drug delivery. J Drug Target. 2004;12:105–12.

    Article  PubMed  Google Scholar 

  11. Krishnaiah YS, Satyanarayana V, Dinesh Kumar B, Karthikeyan RS. In vitro drug release studies on guar gum-based colon targeted oral drug delivery systems of indomethacin. Eur J Pharm Sci. 2002;16:185–92.

    Article  CAS  PubMed  Google Scholar 

  12. Krishnaiah YSR, Styanarayana S, Rama Prasad YV. Evaluation of guar gum as a compression coat for drug targeting to colon. Int J Pharm. 1998;171:137–46.

    Article  CAS  Google Scholar 

  13. Turkoglu M, Ugurlu T. In vitro evaluation of pectin–HPMC compression coated 5-aminosalicylic acid tablets for colonic delivery. Eur J Pharm Biopharm. 2002;53:65–73.

    Article  CAS  PubMed  Google Scholar 

  14. Ugurlu T, Turkoglu M, Gurer US, Akarsu BG. Colonic delivery of compression coated nisin tablets using pectin/HPMC polymer mixture. Eur J Pharm Biopharm. 2007;67:202–10.

    Article  CAS  PubMed  Google Scholar 

  15. Patel MM, Amin AF. Formulation and development of release modulated colon targeted system of meloxicam for potential application in the prophylaxis of colorectal cancer. Drug Deliv. 2011;18:281–93.

    Article  CAS  PubMed  Google Scholar 

  16. American Cancer Society. Available from: www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics. Accessed on 30 April 2016.

  17. Elyagoby A, Layas N, Wong TW. Colon-specific delivery of 5-fluorouracil from zinc pectinate pellets through in situ intracapsular ethylcellulose-pectin plug formation. J Pharm Sci. 2013;102:604–16.

    Article  CAS  PubMed  Google Scholar 

  18. Arber N, Levin B. Chemoprevention of colorectal cancer: ready for routine use? Recent Results Cancer Res. 2005;166:213–30.

    Article  CAS  PubMed  Google Scholar 

  19. Giovannucci E, Rimm EB, Stampfer MJ, Colditz GA, Ascherio A, Willett WC. Aspirin use and the risk of colorectal cancer and adenoma in male health professionals. Ann Intern Med. 1994;121:241–6.

    Article  CAS  PubMed  Google Scholar 

  20. Giardiello FM, Offerhaus GJ, DuBois RN. The role of nonsteroidal anti-inflammatory drugs in colorectal cancer prevention. Eur J Cancer. 1995;31:1071–6.

    Article  Google Scholar 

  21. DuBois RN, Giardiello FM, Smalley WE. Non steroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol Clin N Am. 1996;25:773–91.

    Article  CAS  Google Scholar 

  22. Whittle BJR. COX-1 and COX-2 products in the gut: therapeutic impact of COX-2 inhibitors. Gut. 2000;47:320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harris RE, Beebe-Donk J, Alshafie GA. Cancer chemoprevention by cyclooxygenase 2 (COX-2) blockade. In: Harris RE, editor. Inflammation in the pathogenesis of chronic diseases: the COX-2 controversy. New York: Springer Science; 2007. p. 193–212.

    Chapter  Google Scholar 

  24. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 1995;55:3785–9.

    CAS  PubMed  Google Scholar 

  25. Sheng H, Shao J, Kirkland SC, Isakson P, Coffey RJ, Morrow J, Beauchamp RD, DuBois RN. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest. 1997;99:2254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ayakawa S, Shibamoto Y, Sugie C, Ito M, Ogino H, Tomita N, Kumagai M, Murakami H, Sawa H. Antitumor effects of a cyclooxygenase-2 inhibitor, meloxicam, alone and in combination with radiation and/or 5-fluorouracil in cultured tumor cells. Mol Med Rep. 2009;2:621–5.

    Article  CAS  PubMed  Google Scholar 

  27. Churchill L, Graham AG, Shih CK, Pauletti D, Farina PR, Grob PM. Selective inhibition of human cyclooxygenase-2 by meloxicam. Inflammopharmacology. 1996;4:125–35.

    Article  CAS  Google Scholar 

  28. Tsubouchi Y, Sano H, Yamada R, Hashiramoto A, Kohno M, Kusaka Y, Kondo M. Preferential inhibition of cyclooxygenase-2 by meloxicam in human rheumatoid synoviocytes. Eur J Pharmacol. 2000;395:255–63.

    Article  CAS  PubMed  Google Scholar 

  29. Goldman AP, Williams CS, Sheng H, Lamps LW, Williams VP, Pairet M, Morrow JD, DuBois RN. Meloxicam inhibits the growth of colorectal cancer cells. Carcinogenesis. 1998;19:2195–9.

    Article  CAS  PubMed  Google Scholar 

  30. Naruse T, Nishida Y, Hosono K, Ishiguro N. Meloxicam inhibits osteosarcoma growth, invasiveness and metastasis by COX-2-dependent and independent routes. Carcinogenesis. 2006;27:584–92.

    Article  CAS  PubMed  Google Scholar 

  31. Tsubouchi Y, Mukai S, Kawahito Y, Yamada R, Kohno M, Inoue K, Sano H. Meloxicam inhibits the growth of non-small cell lung cancer. Anticancer Res. 2000;20:2867–72.

    CAS  PubMed  Google Scholar 

  32. Ko SH, Choi GJ, Lee JH, Han YA, Lim SJ, Kim SH. Differential effects of selective cyclooxygenase-2 inhibitors in inhibiting proliferation and induction of apoptosis in oral squamous cell carcinoma. Oncol Rep. 2008;19:425–33.

    CAS  PubMed  Google Scholar 

  33. Zhang N, Tao K, Huang T. Effects of meloxicam on vascular endothelial growth factor and angiopoietin-2 expression in colon carcinoma cell line HT-29. J Huazhong Univ Sci Technolog Med Sci. 2007;27:399–402.

    Article  CAS  PubMed  Google Scholar 

  34. Patel M, Amin A. Recent trends in microbially and/or enzymatically driven colon-specific drug delivery systems. Crit Rev Ther Drug Carrier Syst. 2011;28:489–552.

    Article  CAS  PubMed  Google Scholar 

  35. Chourasia MK, Jain SK. Design and development of multiparticulate system for targeted drug delivery to colon. Drug Deliv. 2004;11:201–7.

    Article  CAS  PubMed  Google Scholar 

  36. Lorenzo-Lamosa ML, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Design of microencapsulated chitosan microspheres for colonic drug delivery. J Controlled Rel. 1998;52:109–18.

    Article  CAS  Google Scholar 

  37. Paharia A, Yadav AK, Rai G, Jain SK, Pancholi SS, Agrawal GP. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting. AAPS PharmSciTech. 2007;8:12.

    Article  PubMed  Google Scholar 

  38. Krishnamachari Y, Madan P, Lin S. Development of pH- and time dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int J Pharm. 2007;338:238–47.

    Article  CAS  PubMed  Google Scholar 

  39. Thakkar H, Sharma RK, Mishra AK, Chuttani K, Murthy RS. Celecoxib incorporated chitosan microspheres: in vitro and in vivo evaluation. J Drug Target. 2004;12:549–57.

    Article  CAS  PubMed  Google Scholar 

  40. Wang YM, Sato H, Adachi I, Horikoshi I. Optimization of the formulation design of chitosan microspheres containing cisplatin. J Pharm Sci. 1996;85:1204–10.

    Article  CAS  PubMed  Google Scholar 

  41. Patel MM, Amin AF. Process, optimization and characterization of mebeverine hydrochloride loaded guar gum microspheres for irritable bowel syndrome. Carbohydr Polym. 2011;86:536–45.

    Article  CAS  Google Scholar 

  42. Patel MM, Amin AA. Design and optimization of colon targeted system of theophylline for chronotherapy of nocturnal asthma. J Pharm Sci. 2011;100:1760–72.

    Article  CAS  PubMed  Google Scholar 

  43. Patel MM, Amin AF. Development of a novel tablet-in-capsule formulation of mesalamine for inflammatory bowel disease. Pharm Dev Technol. 2013;18:390–400.

    Article  CAS  PubMed  Google Scholar 

  44. Patel MM, Patel SL, Bhadani MN, Shah TJ, Amin AF. A synchronous colon specific drug delivery system for orally administered mesalamine. Acta Pharm Sci. 2009;51:251–60.

    CAS  Google Scholar 

  45. Patel MM, Shah TJ, Amin AF, Shah NN. Design, development and optimization of a novel time and pH-dependent colon targeted drug delivery system. Pharm Dev Technol. 2009;14:62–9.

    CAS  PubMed  Google Scholar 

  46. Steed KP, Hooper G, Monti N, Benedetti MS, Fornasini G, Wilding IR. The use of pharmacoscintigraphy to focus the development strategy for a novel 5-ASA colon targeting system (“TIME CLOCK®” system). J Control Rel. 1997;49:115–22.

    Article  CAS  Google Scholar 

  47. Mathews BR. Regulatory aspects of stability testing in Europe. Drug Dev Ind Pharm. 1999;25:831–56.

    Article  Google Scholar 

  48. Krishnaiah YS, Bhaskar Reddy PR, Satyanarayana V, Karthikeyan RS. Studies on the development of oral colon targeted drug delivery systems for metronidazole in the treatment of amoebiasis. Int J Pharm. 2002;236:43–55.

    Article  CAS  PubMed  Google Scholar 

  49. The international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Online 2003. Available from URL: http://www.ich.org/products/guidelines/quality/article/quality-guidelines.

  50. Chourasia MK, Jain SK. Potential of guar gum microspheres for target specific drug release to colon. J Drug Target. 2004;12:435–42.

    Article  CAS  PubMed  Google Scholar 

  51. Jose S, Prema MT, Chacko AJ, Thomas AC, Souto EB. Colon specific chitosan microspheres for chronotherapy of chronic stable angina. Colloids Surf B Biointerfaces. 2011;83:277–83.

    Article  CAS  PubMed  Google Scholar 

  52. Castellanos IJ, Carrasquillo KG, López JD, Alvarez M, Griebenow K. Encapsulation of bovine serum albumin in poly(lactide-coglycolide) micropsheres by the solid-in-oil-in-water technique. J Pharm Pharmacol. 2001;53:167–78.

    Article  CAS  PubMed  Google Scholar 

  53. Xu J, Bovet LL, Zhao K. Taste masking microspheres for orally disintegrating tablets. Int J Pharm. 2008;359:63–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. Design of pH sensitive microspheres for the colonic delivery of the immunosuppressive drug tacrolimus. Eur J Pharm Biopharm. 2004;58:37–43.

    Article  CAS  PubMed  Google Scholar 

  55. Ji CM, Xu HN, Wu W. Guar gum as potential film coating material for colon-specific delivery of fluorouracil. J Biomater Appl. 2009;23:311–29.

    Article  CAS  PubMed  Google Scholar 

  56. Hasegawa A, Nakagawa H, Sugimoto I. Damage of the micro-capsule wall during compression. Yakugaku Zasshi. 1984;104:889–95.

    CAS  PubMed  Google Scholar 

  57. Bamba M, Puisieusx F, Marty JP, Carstensen JT. Release mechanisms in gel forming sustained release preparations. Int J Pharm. 1979;2:307–15.

    Article  CAS  Google Scholar 

  58. Gidenne T, Lebas F. Feeding behavior in rabbits. In: Bels V, editor. Feeding in domestic vertebrates: from structure to behavior. Oxfordshire: CABI Publishing; 2006. p. 179–94.

    Chapter  Google Scholar 

  59. Ishikawa T, Koizumi N, Mukai B, Utoguchi N, Fujii M, Matsumoto M, Endo H, Shirotake S, Watanabe Y. Pharmacokinetics of acetaminophen from rapidly disintegrating compressed tablet prepared using microcrystalline cellulose (PH-M-06) and spherical sugar granules. Chem Pharm Bull (Tokyo). 2001;49:230–2.

    Article  CAS  Google Scholar 

  60. Ghosh MN. Fundamentals of experimental pharmacology. 4th ed. Kolkata: SK Ghosh and others; 2008.

    Google Scholar 

  61. Vijayalakshmi P, Devi VK, Devi K, Benson MK, Srinagesh S. Formulation development and in vivo characterization of solubility enhanced gliclazide tablets. Curr trends Biotech Pharm. 2008;2:456–61.

    CAS  Google Scholar 

Download references

Acknowledgments

The author is thankful to Nirma University, Ahmedabad, Gujarat, India, for providing financial assistance in form of minor research project. The author acknowledges Dr. Bhoomika Patel, Assistant Professor, Department of Pharmacology, Institute of Pharmacy, Nirma University for rendering required help for the in vivo evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayur M. Patel.

Ethics declarations

In vivo pharmacokinetic studies of the developed CoDDS were carried out as per the protocol (IP/PCEU/FAC/14-1/018) approved by the Institutional Animal Ethics Committee, Nirma University, Ahmedabad, India.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.M. Formulation and development of di-dependent microparticulate system for colon-specific drug delivery. Drug Deliv. and Transl. Res. 7, 312–324 (2017). https://doi.org/10.1007/s13346-017-0358-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0358-7

Keywords

Navigation