Skip to main content
Log in

Multifunctional roles of geminivirus encoded replication initiator protein

  • Original Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

Geminivirus infection has been a threat to cultivation worldwide by causing huge losses to the crop. The single-stranded DNA genome of a geminivirus possesses a limited coding potential and many of the open reading frames (ORFs) are overlapping. Out of 5–7 ORFs that a geminivirus genome codes for, the AC1 ORF encodes for the replication initiator protein (Rep) which is involved in the replication of virus within the infected plant cell. Rep is the only viral protein absolutely required for the in planta viral replication. Across different genera of the Geminiviridae family, the AC1 ORF exhibits a high degree of sequence conservation thus it has been used as an effective target for developing broad spectrum resistance against the invading geminiviruses. This multifunctional protein is required for initiation, elongation as well as termination of the viral replication process. Rep is also involved in stimulation of viral transcription. In addition, it also functions as suppressor of gene silencing and is involved in the process of transcription by regulating the expression of certain viral genes. Rep protein also interacts with few viral proteins such as coat protein, replication enhancer protein and with several host factors involved in different pathways and processes for its replication and efficient infection. This review will summarise our current understanding about the role of this early viral protein in viral propagation as well as in establishment of pathogenesis in a permissive host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ach RA, Durfee T, Miller AB, Taranto P, Hanley-Bowdoin L, Zambryski PC, Gruissem W. RRB1 and RRB2 encode maize retinoblastoma-related proteins that interact with a plant D-type cyclin and geminivirus replication protein. Mol Cell Biol. 1997;17(9):5077–86.

    Article  CAS  Google Scholar 

  2. Adams MJ, King AM, Carstens EB. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). Arch Virol. 2013;158(9):2023–30.

    Article  CAS  Google Scholar 

  3. Arguello-Astorga G, Lopez-Ochoa L, Kong LJ, Orozco BM, Settlage SB, Hanley-Bowdoin L. A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J Virol. 2004;78(9):4817–26.

    Article  CAS  Google Scholar 

  4. Asad S, Haris WA, Bashir A, Zafar Y, Malik KA, Malik NN, Lichtenstein CP. Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Arch Virol. 2003;148(12):2341–52.

    Article  CAS  Google Scholar 

  5. Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 2008;148(1):436–54.

    Article  CAS  Google Scholar 

  6. Bagewadi B, Chen S, Lal SK, Choudhury NR, Mukherjee SK. PCNA interacts with Indian mung bean yellow mosaic virus rep and downregulates Rep activity. J Virol. 2004;78(21):11890–903.

    Article  CAS  Google Scholar 

  7. Bejarano ER, Lichtenstein CP. Expression of TGMV antisense RNA in transgenic tobacco inhibits replication of BCTV but not ACMV geminiviruses. Plant Mol Biol. 1994;24(1):241–8.

    Article  CAS  Google Scholar 

  8. Bendahmane M, Gronenborn B. Engineering resistance against tomato yellow leaf curl virus (TYLCV) using antisense RNA. Plant Mol Biol. 1997;33(2):351–7.

    Article  CAS  Google Scholar 

  9. Brough CL, Gardiner WE, Inamdar NM, Zhang XY, Ehrlich M, Bisaro DM. DNA methylation inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts. Plant Mol Biol. 1992;18(4):703–12.

    Article  CAS  Google Scholar 

  10. Brunetti A, Tavazza R, Noris E, Lucioli A, Accotto GP, Tavazza M. Transgenically expressed T-Rep of tomato yellow leaf curl Sardinia virus acts as a trans-dominant-negative mutant, inhibiting viral transcription and replication. J Virol. 2001;75(22):10573–81.

    Article  CAS  Google Scholar 

  11. Burgyan J, Havelda Z. Viral suppressors of RNA silencing. Trends Plant Sci. 2011;16(5):265–72.

    Article  CAS  Google Scholar 

  12. Campos-Olivas R, Louis JM, Clerot D, Gronenborn B, Gronenborn AM. The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc Natl Acad Sci USA. 2002;99(16):10310–5.

    Article  CAS  Google Scholar 

  13. Castillo AG, Collinet D, Deret S, Kashoggi A, Bejarano ER. Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology. 2003;312(2):381–94.

    Article  CAS  Google Scholar 

  14. Castillo AG, Kong LJ, Hanley-Bowdoin L, Bejarano ER. Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol. 2004;78(6):2758–69.

    Article  CAS  Google Scholar 

  15. Chakraborty S. Tomato leaf curl viruses from India. In: Mahy BWJ, Van Regenmortel MHV, editors. Encyclopedia of virology (5 volumes). Oxford: Elsevier; 2008. p. 124–33.

    Chapter  Google Scholar 

  16. Chakraborty S, Pandey PK, Banerjee MK, Kalloo G, Fauquet CM. Tomato leaf curl Gujarat virus, a new begomovirus species causing a severe leaf curl disease of tomato in Varanasi, India. Phytopathology. 2003;93:1485–95.

    Article  CAS  Google Scholar 

  17. Chattopadhyay B, Singh AK, Yadav T, Fauquet CM, Sarin NB, Chakraborty S. Infectivity of the cloned components of a begomovirus: dNA beta causing chilli leaf curl disease in India. Arch Virol. 2008;153(3):533–9.

    Article  CAS  Google Scholar 

  18. Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM. Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol. 2004;56(4):601–11.

    Article  CAS  Google Scholar 

  19. Chellappan P, Vanitharani R, Pita J, Fauquet CM. Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol. 2004;78(14):7465–77.

    Article  CAS  Google Scholar 

  20. Choudhury NR, Malik PS, Singh DK, Islam MN, Kaliappan K, Mukherjee SK. The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase. Nucl Acids Res. 2006;34(21):6362–77.

    Article  CAS  Google Scholar 

  21. Clerot D, Bernardi F. DNA helicase activity is associated with the replication initiator protein rep of tomato yellow leaf curl geminivirus. J Virol. 2006;80(22):11322–30.

    Article  CAS  Google Scholar 

  22. Collin S, Fernandez-Lobato M, Gooding PS, Mullineaux PM, Fenoll C. The two nonstructural proteins from wheat dwarf virus involved in viral gene expression and replication are retinoblastoma-binding proteins. Virology. 1996;219(1):324–9.

    Article  CAS  Google Scholar 

  23. Day AG, Bejarano ER, Buck KW, Burrell M, Lichtenstein CP. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc Natl Acad Sci USA. 1991;88(15):6721–5.

    Article  CAS  Google Scholar 

  24. Desbiez C, David C, Mettouchi A, Laufs J, Gronenborn B. Rep protein of tomato yellow leaf curl geminivirus has an ATPase activity required for viral DNA replication. Proc Natl Acad Sci USA. 1995;92(12):5640–4.

    Article  CAS  Google Scholar 

  25. Desvoyes B, Ramirez-Parra E, Xie Q, Chua NH, Gutierrez C. Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol. 2006;140(1):67–80.

    Article  CAS  Google Scholar 

  26. Eagle PA, Orozco BM, Hanley-Bowdoin L. A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell. 1994;6(8):1157–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ermak G, Paszkowski U, Wohlmuth M, Mittelsten Scheid O, Paszkowski J. Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms. Nucl Acids Res. 1993;21(15):3445–50.

    Article  CAS  Google Scholar 

  28. George B, Ruhel R, Mazumder M, Sharma VK, Jain SK, Gourinath S, Chakraborty S. Mutational analysis of the helicase domain of a replication initiator protein reveals critical roles of Lys 272 of the B’ motif and Lys 289 of the beta-hairpin loop in geminivirus replication. J Gen Virol. 2014;95(7):1591–602.

    Article  CAS  Google Scholar 

  29. Gutzat R, Borghi L, Gruissem W. Emerging roles of RETINOBLASTOMA-RELATED proteins in evolution and plant development. Trends Plant Sci. 2012;17(3):139–48.

    Article  CAS  Google Scholar 

  30. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol. 2000;35(2):105–40.

    CAS  Google Scholar 

  31. Heyraud-Nitschke F, Schumacher S, Laufs J, Schaefer S, Schell J, Gronenborn B. Determination of the origin cleavage and joining domain of geminivirus Rep proteins. Nucl Acids Res. 1995;23(6):910–6.

    Article  CAS  Google Scholar 

  32. Hong Y, Stanley J. Virus resistance in Nicotiana benthamiana conferred by African cassava mosaic virus replication-associated protein (AC1) transgene. Mol Plant-Microbe Interact. 1996;9(4):219–25.

    Article  CAS  Google Scholar 

  33. Jeske H, Lutgemeier M, Preiss W. DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J. 2001;20(21):6158–67.

    Article  CAS  Google Scholar 

  34. Kaliappan K, Choudhury NR, Suyal G, Mukherjee SK. A novel role for RAD54: this host protein modulates geminiviral DNA replication. FASEB J. 2012;26(3):1142–60.

    Article  CAS  Google Scholar 

  35. Kong LJ, Hanley-Bowdoin L. A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell. 2002;14(8):1817–32.

    Article  CAS  Google Scholar 

  36. Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB, Gruissem W, Robertson D, Hanley-Bowdoin L. A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 2000;19(13):3485–95.

    Article  CAS  Google Scholar 

  37. Koonin EV, Ilyina TV. Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J Gen Virol. 1992;73(Pt 10):2763–6.

    Article  CAS  Google Scholar 

  38. Kumar RV, Singh AK, Singh AK, Yadav T, Basu S, Kushwaha N, Chattopadhyay B, Chakraborty S. Complexity of begomovirus and betasatellite populations associated with chilli leaf curl disease in India. J Gen Virol. 2015;96:3157–72.

    Article  Google Scholar 

  39. Kumar RV, Prasanna HC, Singh AK, Ragunathan D, Garg GK, Chakraborty S. Molecular genetic analysis and evolution of begomoviruses and betasatellites causing yellow mosaic disease of bhendi. Virus Genes. 2016. https://doi.org/10.1007/s11262-016-1414-y.

    Article  PubMed  Google Scholar 

  40. Kumari P, Singh AK, Sharma VK, Chattopadhyay B, Chakraborty S. A novel recombinant tomato-infecting begomovirus capable of trans-complementing heterologous DNA-B components. Arch Virol. 2011;156:769–83.

    Article  CAS  Google Scholar 

  41. Kushwaha NK, Bhardwaj M, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathog. 2017;13(8):e1006587.

    Article  Google Scholar 

  42. Laufs J, Traut W, Heyraud F, Matzeit V, Rogers SG, Schell J, Gronenborn B. In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci USA. 1995;92(9):3879–83.

    Article  CAS  Google Scholar 

  43. Lazarowitz SG, Shepherd RJ. Geminiviruses: genome structure and gene function. Crit Rev Plant Sci. 1992;11(4):327–49.

    Article  CAS  Google Scholar 

  44. Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L, Bhaumik SR, Shilatifard A. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell. 2007;131(6):1084–96.

    Article  CAS  Google Scholar 

  45. Liu Y, Jin W, Wang L, Wang X. Replication-associated proteins encoded by Wheat dwarf virus act as RNA silencing suppressors. Virus Res. 2014;190:34–9.

    Article  CAS  Google Scholar 

  46. Lopez-Ochoa L, Ramirez-Prado J, Hanley-Bowdoin L. Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells. J Virol. 2006;80(12):5841–53.

    Article  CAS  Google Scholar 

  47. Lucioli A, Noris E, Brunetti A, Tavazza R, Ruzza V, Castillo AG, Bejarano ER, Accotto GP, Tavazza M. Tomato yellow leaf curl Sardinia virus rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. J Virol. 2003;77(12):6785–98.

    Article  CAS  Google Scholar 

  48. Lucioli A, Sallustio DE, Barboni D, Berardi A, Papacchioli V, Tavazza R, Tavazza M. A cautonary note on pathogen derived sequences. Nat Biotechnol. 2008;26(6):617–9.

    Article  CAS  Google Scholar 

  49. Lucioli A, Perla C, Berardi A, Gatti F, Spano L, Tavazza M. Transcriptomics of tomato plants infected with TYLCSV or expressing the central TYLCSV Rep protein domain uncover changes impacting pathogen response and senescence. Plant Physiol Biochem. 2016;103:61–70.

    Article  CAS  Google Scholar 

  50. Luque A, Sanz-Burgos AP, Ramirez-Parra E, Castellano MM, Gutierrez C. Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology. 2002;302(1):83–94.

    Article  CAS  Google Scholar 

  51. Nagar S, Hanley-Bowdoin L, Robertson D. Host DNA replication is induced by geminivirus infection of differentiated plant cells. Plant Cell. 2002;14(12):2995–3007.

    Article  CAS  Google Scholar 

  52. Nash TE, Dallas MB, Reyes MI, Buhrman GK, Ascencio-Ibanez JT, Hanley-Bowdoin L. Functional analysis of a novel motif conserved across geminivirus Rep proteins. J Virol. 2011;85(3):1182–92.

    Article  CAS  Google Scholar 

  53. Noris E, Accotto GP, Tavazza R, Brunetti A, Crespi S, Tavazza M. Resistance to tomato yellow leaf curl geminivirus in Nicotiana benthamiana plants transformed with a truncated viral C1 gene. Virology. 1996;224(1):130–8. https://doi.org/10.1006/viro.1996.0514.

    Article  CAS  PubMed  Google Scholar 

  54. Orozco BM, Hanley-Bowdoin L. Conserved sequence and structural motifs contribute to the DNA binding and cleavage activities of a geminivirus replication protein. J Biol Chem. 1998;273(38):24448–56.

    Article  CAS  Google Scholar 

  55. Pant V, Gupta D, Choudhury NR, Malathi V, Varma A, Mukherjee S. Molecular characterization of the Rep protein of the blackgram isolate of Indian mungbean yellow mosaic virus. J Gen Virol. 2001;82(10):2559–67.

    Article  CAS  Google Scholar 

  56. Paprotka T, Deuschle K, Metzler V, Jeske H. Conformation-selective methylation of geminivirus DNA. J Virol. 2011;85(22):12001–12.

    Article  CAS  Google Scholar 

  57. Pilartz M, Jeske H. Abutilon mosaic geminivirus double-stranded DNA is packed into minichromosomes. Virology. 1992;189(2):800–2.

    Article  CAS  Google Scholar 

  58. Raja P, Sanville BC, Buchmann RC, Bisaro DM. Viral genome methylation as an epigenetic defense against geminiviruses. J Virol. 2008;82(18):8997–9007.

    Article  CAS  Google Scholar 

  59. Raja P, Wolf JN, Bisaro DM. RNA silencing directed against geminiviruses: post-transcriptional and epigenetic components. Biochim Biophys Acta. 2010;1799(3–4):337–51.

    Article  CAS  Google Scholar 

  60. Reyes MI, Nash TE, Dallas MM, Ascencio-Ibanez JT, Hanley-Bowdoin L. Peptide aptamers that bind to geminivirus replication proteins confer a resistance phenotype to tomato yellow leaf curl virus and tomato mottle virus infection in tomato. J Virol. 2013;87(17):9691–706.

    Article  CAS  Google Scholar 

  61. Richter KS, Ende L, Jeske H. Rad54 is not essential for any geminiviral replication mode in planta. Plant Mol Biol. 2015;87(1–2):193–202.

    Article  CAS  Google Scholar 

  62. Richter KS, Serra H, White CI, Jeske H. The recombination mediator RAD51D promotes geminiviral infection. Virology. 2016;493:113–27.

    Article  CAS  Google Scholar 

  63. Rizvi I, Choudhury NR, Tuteja N. Insights into the functional characteristics of geminivirus rolling-circle replication initiator protein and its interaction with host factors affecting viral DNA replication. Arch Virol. 2015;160(2):375–87.

    Article  CAS  Google Scholar 

  64. Rodriguez-Negrete E, Lozano-Duran R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol. 2013;199(2):464–75.

    Article  CAS  Google Scholar 

  65. Sanchez-Duran MA, Dallas MB, Ascencio-Ibanez JT, Reyes MI, Arroyo-Mateos M, Ruiz-Albert J, Hanley-Bowdoin L, Bejarano ER. Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J Virol. 2011;85(19):9789–800.

    Article  CAS  Google Scholar 

  66. Sardo L, Lucioli A, Tavazza M, Masenga V, Tavazza R, Accotto GP, Noris E. An RGG sequence in the replication-associated protein (Rep) of Tomato yellow leaf curl Sardinia virus is involved in transcriptional repression and severely impacts resistance in Rep-expressing plants. J Gen Virol. 2011;92(Pt 1):204–9.

    Article  CAS  Google Scholar 

  67. Sera T. Inhibition of virus DNA replication by artificial zinc finger proteins. J Virol. 2005;79(4):2614–9.

    Article  CAS  Google Scholar 

  68. Shung CY, Sunter G. AL1-dependent repression of transcription enhances expression of Tomato golden mosaic virus AL2 and AL3. Virology. 2007;364(1):112–22.

    Article  CAS  Google Scholar 

  69. Singh AK, Mishra KK, Chattopadhyay B, Chakraborty S. Biological and Molecular characterization of a Begomovirus associated with yellow mosaic vein mosaic disease of pumpkin from Northern India. Virus Genes. 2009;39(3):359–70.

    Article  CAS  Google Scholar 

  70. Singh AK, Chattopadhyay B, Chakraborty S. Biology and interactions of two distinct monopartite begomoviruses and betasatellites associated with radish leaf curl disease in India. Virology J. 2012;9:43.

    Article  CAS  Google Scholar 

  71. Singh DK, Islam MN, Choudhury NR, Karjee S, Mukherjee SK. The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein. Nucl Acids Res. 2007;35(3):755–70.

    Article  CAS  Google Scholar 

  72. Sunter G, Hartitz MD, Bisaro DM. Tomato golden mosaic virus leftward gene expression: autoregulation of geminivirus replication protein. Virology. 1993;195(1):275–80.

    Article  CAS  Google Scholar 

  73. Suyal G, Mukherjee SK, Choudhury NR. The host factor RAD51 is involved in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol. 2013;158(9):1931–41.

    Article  CAS  Google Scholar 

  74. Suyal G, Mukherjee SK, Srivastava PS, Choudhury NR. Arabidopsis thaliana MCM2 plays role(s) in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol. 2013;158(5):981–92.

    Article  CAS  Google Scholar 

  75. Suyal G, Rana VS, Mukherjee SK, Wajid S, Choudhury NR. Arabidopsis thaliana NAC083 protein interacts with Mungbean yellow mosaic India virus (MYMIV) Rep protein. Virus Genes. 2014; 48(3):486–93.

    Article  CAS  Google Scholar 

  76. Vanitharani R, Chellappan P, Fauquet CM. Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proc Natl Acad Sci USA. 2003;100(16):9632–6.

    Article  CAS  Google Scholar 

  77. Varsani A, Navas-Castillo J, Moriones E, Hernandez-Zepeda C, Idris A, Brown JK, Murilo Zerbini F, Martin DP. Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol. 2014;159(8):2193–203.

    Article  CAS  Google Scholar 

  78. Xie Q, Sanz-Burgos AP, Guo H, Garcia JA, Gutierrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol. 1999;39(4):647–56.

    Article  CAS  Google Scholar 

  79. Xie Q, Suarez-Lopez P, Gutierrez C. Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J. 1995;14(16):4073–82.

    Article  CAS  Google Scholar 

  80. Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE. Use of Tomato yellow leaf curl virus (TYLCV) Rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology. 2004;94(5):490–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank JNU for providing UGC-RNW Grant (UGC-RNW/SLS/SC) to SC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruhel, R., Chakraborty, S. Multifunctional roles of geminivirus encoded replication initiator protein. VirusDis. 30, 66–73 (2019). https://doi.org/10.1007/s13337-018-0458-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-018-0458-0

Keywords

Navigation