Skip to main content
Log in

Insights into the functional characteristics of geminivirus rolling-circle replication initiator protein and its interaction with host factors affecting viral DNA replication

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Geminiviruses are DNA viruses that infect several economically important crops, resulting in a reduction in their overall yield. These plant viruses have circular, single-stranded DNA genomes that replicate mainly by a rolling-circle mechanism. Geminivirus infection results in crosstalk between viral and cellular factors to complete the viral life cycle or counteract the infection as part of defense mechanisms of host plants. The geminiviral replication initiator protein Rep is the only essential viral factor required for replication. It is multifunctional and is known to interact with a number of host factors to modulate the cellular environment or to function as a part of the replication machinery. This review provides a holistic view of the research related to the viral Rep protein and various host factors involved in geminiviral DNA replication. Studies on the promiscuous nature of geminiviral satellite DNAs are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang W, Olson NH, Baker TS, Faulkner L, Agbandje-McKenna M, Boulton MI, Davies JW, McKenna R (2001) Structure of the Maize streak virus geminate particle. Virology 279:471–477

    Article  CAS  PubMed  Google Scholar 

  2. Londono A, Riego-Ruiz L, Arguello-Astorga GR (2010) DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs. Arch Virol 155:1033–1046

    Article  CAS  PubMed  Google Scholar 

  3. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  4. Kammann M, Schalk HJ, Matzeit V, Schaefer S, Schell J, Gronenborn B (1991) DNA replication of wheat dwarf virus, a geminivirus, requires two cis-acting signals. Virology 184:786–790

    Article  CAS  PubMed  Google Scholar 

  5. Hayes RJ, Macdonald H, Coutts RHA, Buck KW (1988) Priming of complementary DNA synthesis in vitro by small DNA molecules tightly bound to virion DNA of Wheat dwarf virus. J Gen Virol 69:1345–1350

    Article  CAS  Google Scholar 

  6. Schalk HJ, Matzeit V, Schiller B, Schell J, Gronenborn (1989) Wheat dwarf virus, a geminivirus of graminaceous plants needs splicing for replication. EMBO J 8:359–364

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    Article  CAS  PubMed  Google Scholar 

  8. Laufs J, Traut W, Heyraud F, Matzeit V, Rogers SG, Schell J, Gronenborn B (1995) In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc Natl Acad Sci USA 92:3879–3883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fondong VN (2013) Geminivirus protein structure and function. Molec Plant Path 14:635–649

    Article  CAS  Google Scholar 

  10. Koonin EV, Ilyina TV (1992) Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J Gen Virol 73:2763–2766

    Article  CAS  PubMed  Google Scholar 

  11. Nash TE, Dallas MB, Reyes MI, Buhrman GK, Ascencio-Ibañez JT, Hanley-Bowdoin L (2011) Functional analysis of a novel motif conserved across geminivirus Rep proteins. J Virol 85:1182–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Orozco BM, Miller AB, Settlage SB, Hanley-Bowdoin L (1997) Functional domains of a geminivirus replication protein. J Biol Chem 272:9840–9846

    Article  CAS  PubMed  Google Scholar 

  13. Fontes EPB, Luckow VA, Hanley-Bowdoin L (1992) A geminivirus replication protein is a sequence-specific DNA binding protein. Plant Cell 4:597–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lazarowitz SG, Wu LC, Rogers SG, Elmer JS (1992) Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin. Plant Cell 4:799–809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Argüello-Astorga GR, Guevara-González RG, Herrera-Estrella LR, Rivera-Bustamante RF (1994) Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100

    Article  PubMed  Google Scholar 

  16. Fontes EPB, Eagle PA, Sipe PS, Luckow VA, Hanley-Bowdoin L (1994) Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem 269:8459–8465

    CAS  PubMed  Google Scholar 

  17. Behjatnia SAA, Dry IB, Rezaian MA (1998) Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus. Nucleic Acids Res 26:925–931

    Article  CAS  Google Scholar 

  18. Singh DK, Malik PS, Choudhury NR, Mukherjee SK (2008) MYMIV replication initiator protein (Rep): roles at the initiation and elongation steps of MYMIV DNA replication. Virology 380:75–83

    Article  CAS  PubMed  Google Scholar 

  19. Fontes EPB, Gladfelter HJ, Schaffer RL, Petty TD, Hanley-Bowdoin L (1994) Geminivirus replication origins have a modular organization. Plant Cell 6:405–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Andrade EC, Manhani GG, Alfenas PF, Calegario RF, Fontes EPB, Zerbini FM (2006) Tomato yellow spot virus, a tomato-infecting begomovirus from Brazil with a closer relationship to viruses from Sida sp., forms pseudorecombinants with begomoviruses from tomato but not from Sida. J Gen Virol 87:3687–3696

    Article  CAS  PubMed  Google Scholar 

  21. Campos-Olivas R, Louis JM, Clerot D, Gronenborn B, Gronenborn AM (2002) The structure of a replication initiator unites diverse aspects of nucleic acid metabolism. Proc Natl Acad Sci USA 99:10310–10315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Missich R, Ramirez-Parra E, Gutierrez C (2000) Relationship of oligomerization to DNA binding of wheat dwarf virus RepA and Rep proteins. Virology 273:178–188

    Article  CAS  PubMed  Google Scholar 

  23. Orozco BM, Gladfelter HJ, Settlage SB, Eagle PA, Gentry RN, Hanley-Bowdoin L (1998) Multiple Cis elements contribute to geminivirus origin function. Virology 242:346–356

    Article  CAS  PubMed  Google Scholar 

  24. Sunter G, Hartltz MD, Bisam DM (1993) Tomato golden mosaic virus leftward gene expression: autoregulation of geminivirus replication protein. Virology 195:275–280

    Article  CAS  PubMed  Google Scholar 

  25. Eagle PA, Orozco BM, Hanley-Bowdoin L (1994) A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 6:1157–1170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Collin S, Fernandez-Lobato M, Gooding PS, Mullineaux PM, Fenoll C (1996) The two nonstructural proteins from Wheat dwarf virus involved in viral gene expression and replication are retinoblastoma-binding proteins. Virology 219:324–329

    Article  CAS  PubMed  Google Scholar 

  27. Shung CY, Sunter G (2007) AL1-dependent repression of transcription enhances expression of Tomato golden mosaic virus AL2 and AL3. Virology 364:112–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Eini O, Behjatnia SAA, Dogra S, Dry IB, Randles JW, Rezaian MA (2009) Identification of sequence elements regulating promoter activity and replication of a monopartite begomovirus-associated DNA β satellite. J Gen Virol 90:253–260

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Zhang X, Wang Y, Hou H, Qian Y (2012) Characterization of sequence elements from Malvastrum yellow vein betasatellite regulating promoter activity and DNA replication. Virology 9:1–9

    Article  Google Scholar 

  30. Orozco BM, Kong LJ, Batts LA, Elledge S, Hanley-Bowdoin L (2000) The multifunctional character of a geminivirus replication protein is reflected by its complex oligomerization properties. J Biol Chem 275:6114–6122

    Article  CAS  PubMed  Google Scholar 

  31. Desbiez C, David C, Mettouchi A, Laufs J, Gronenborn B (1995) Rep protein of tomato yellow leaf curl geminivirus has an ATPase activity required for viral DNA replication. Proc Natl Acad Sci USA 92:5640–5644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pant V, Gupta D, Choudhury NR, Malathi VG, Varma A, Mukherjee SK (2001) Molecular characterization of the Rep protein of the blackgram isolate of Indian mungbean yellow mosaic virus. J Gen Virol 82:2559–2567

    CAS  PubMed  Google Scholar 

  33. Krenz B, Neugart F, Kleinow T, Jeske H (2011) Self-interaction of Abutilon mosaic virus replication initiator protein (Rep) in plant cell nuclei. Virus Res 161:194–197

    Article  CAS  PubMed  Google Scholar 

  34. Hanson SF, Hoogstraten RA, Ahlquist P, Gilbertson RL, Russell DR, Maxwell DP (1995) Mutational analysis of a putative NTP-binding domain in the replication-associated protein (AC1) of Bean golden mosaic geminivirus. Virology 211:1–9

    Article  CAS  PubMed  Google Scholar 

  35. Choudhury NR, Malik PS, Singh DK, Islam MN, Kaliappan K, Mukherjee SK (2006) The oligomeric Rep protein of Mungbean yellow mosaic India virus (MYMIV) is a likely replicative helicase. Nucleic Acids Res 34:6362–6377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Clerot D, Bernardi F (2006) DNA helicase activity is associated with the replication initiator protein rep of Tomato yellow leaf curl geminivirus. J Virol 80:11322–11330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Saunders K, Lucy A, Stanley J (1991) DNA forms of the geminivirus African cassava mosaic virus consistent with a rolling circle mechanism of replication. Nucleic Acids Res 19:2325–2330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Stenger DC, Revington GN, Stevenson MC, Bisaro DM (1991) Replicational release of geminivirus genomes from tandemly repeated copies: evidence for rolling-circle replication of a plant viral DNA. Proc Natl Acad Sci USA 88:8029–8033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Donson J, Morris-Krsinich BAM, Mullineaux PM, Boulton MI, Davies JW (1984) A putative primer for second-strand DNA synthesis of maize streak virus is virion-associated. EMBO J 3:3069–3073

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Saunders K, Lucy A, Stanley J (1992) RNA-primed complementary-sense DNA synthesis of the geminivirus African cassava mosaic virus. Nucleic Acids Res 20:6311–6315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Orozco BM, Hanley-Bowdoin L (1996) A DNA structure is required for geminivirus replication origin function. J Virol 70:148–158

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Singh DK, Islam MN, Choudhury NR, Karjee S, Mukherjee SK (2007) The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of Mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein. Nucleic Acids Res 35:755–770

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Luque A, Sanz-Burgos AP, Ramirez-Parra E, Castellano MM, Gutierrez C (2002) Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302:83–94

    Article  CAS  PubMed  Google Scholar 

  44. Suyal G, Mukherjee SK, Srivastava PS, Choudhury NR (2013) Arabidopsis thaliana MCM2 plays role(s) in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol 158:981–992

    Article  CAS  PubMed  Google Scholar 

  45. Bagewadi B, Chen S, Lal SK, Choudhury NR, Mukherjee SK (2004) PCNA interacts with Indian mung bean yellow mosaic virus Rep and downregulates Rep Activity. J Virol 78:11890–11903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Jeske H, Lutgemeier M, Preiss W (2001) DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J 20:6158–6167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Alberter B, Rezaian MA, Jeske H (2005) Replicative intermediates of Tomato leaf curl virus and its satellite DNAs. Virology 331:441–448

    Article  CAS  PubMed  Google Scholar 

  48. Preiss W, Jeske H (2003) Multitasking in replication is common among geminiviruses. J Virol 77:2972–2980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Settlage SB, Miller AB, Hanley-Bowdoin L (1996) Interactions between geminivirus replication proteins. J Virol 70:6790–6795

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Settlage SB, See RG, Hanley-Bowdoin L (2005) Geminivirus C3 protein: replication enhancement and protein interactions. J Virol 79:9885–9895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with Tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Settlage SB, Miller AB, Gruissem W, Hanley-Bowdoin L (2001) Dual interaction of a geminivirus replication accessory factor with a viral replication protein and a plant cell cycle regulator. Virology 279:570–576

    Article  CAS  PubMed  Google Scholar 

  53. Pasumarthy KK, Choudhury NR, Mukherjee SK (2010) Tomato leaf curl Kerala virus (ToLCKeV) AC3 protein forms a higher order oligomer and enhances ATPase activity of replication initiator protein (Rep/AC1). Virology 7:1–8

    Article  Google Scholar 

  54. Malik PS, Kumar V, Bagewadi B, Mukherjee SK (2005) Interaction between coat protein and replication initiation protein of Mung bean yellow mosaic India virus might lead to control of viral DNA replication. Virology 337:273–283

    Article  CAS  PubMed  Google Scholar 

  55. Nagar S, Pedersen TJ, Carrick KM, Hanley-Bowdoin L, Robertson D (1995) A geminivirus induces expression of a host DNA synthesis protein in terminally differentiated plant cells. Plant Cell 7:705–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Xie Q, Suarez-Lopez P, Gutierrez C (1995) Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J 14:4073–4082

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kaliappan K, Choudhury NR, Suyal G, Mukherjee SK (2012) A novel role for RAD54: this host protein modulates geminiviral DNA replication. FASEB J 26:1142–1160

    Article  CAS  PubMed  Google Scholar 

  58. Suyal G, Mukherjee SK, Choudhury NR (2013) The host factor RAD51 is involved in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol 158:1931–1941

    Article  CAS  PubMed  Google Scholar 

  59. Kong LJ, Hanley-Bowdoin L (2002) A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell 14:1817–1832

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Sidle A, Palaty C, Dirks P, Wiggan O, Kiess M, Gill RM, Wong AK, Hamel PA (1996) Activity of the retinoblastoma family proteins, pRB, p107, and p130, during cellular proliferation and differentiation. Crit Rev Biochem Mol Biol 31:237–271

    Article  CAS  PubMed  Google Scholar 

  61. Xie Q, Sanz-Burgos AP, Hannon GJ, Gutierrez C (1996) Plant cells contain a novel member of the retinoblastoma family of growth regulatory proteins. EMBO J 15:4900–4908

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB, Gruissem W, Robertson D, Hanley-Bowdoin L (2000) A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J 19:3485–3495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Arguello-Astorga G, Lopez-Ochoa L, Kong LJ, Orozco BM, Settlage SB, Hanley-Bowdoin L (2004) A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J Virol 78:4817–4826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Sabelli PA, Hoerster G, Lizarraga LE, Brown SW, Gordon-Kamm WJ, Larkinsa BA (2009) Positive regulation of minichromosome maintenance gene expression, DNA replication, and cell transformation by a plant retinoblastoma gene. Proc Natl Acad Sci USA 106:4042–4047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Egelkrout EM, Robertson D, Hanley-Bowdoin L (2001) Proliferating cell nuclear antigen transcription is repressed through an E2F consensus element and activated by geminivirus infection in mature leaves. Plant Cell 13:1437–1452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Castillo AG, Collinet D, Deret S, Kashoggi A, Bejarano ER (2003) Dual interaction of plant PCNA with geminivirus replication accessory protein (REn) and viral replication protein (Rep). Virology 312:381–394

    Article  CAS  PubMed  Google Scholar 

  67. Gomes XV, Schmidt SL, Burgers PM (2001) ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J Biol Chem 276:34776–34783

    Article  CAS  PubMed  Google Scholar 

  68. Mossi R, Hubscher U (1998) Clamping down on clamps and clamp loaders-the eukaryotic replication factor. C Eur J Biochem 254:209–216

    CAS  Google Scholar 

  69. Bochman ML, Schwacha A (2008) The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31:287–293

    Article  CAS  PubMed  Google Scholar 

  70. Pilartz M, Jeske H (2003) Mapping of Abutilon Mosaic Geminivirus Minichromosomes. J Virol 77:10808–10818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Rodrıguez-Negrete E, Lozano-Duran R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol 199:464–475

    Article  PubMed  Google Scholar 

  72. Sánchez-Durán MA, Dallas MB, Ascencio-Ibañez JT, Reyes MI, Arroyo-Mateos M, Ruiz-Albert J, Hanley-Bowdoin L, Bejarano ER (2011) Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J Virol 85:9789–9800

    Article  PubMed Central  PubMed  Google Scholar 

  73. Castillo AG, Kong LJ, Hanley-Bowdoin L, Bejarano ER (2004) Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol 78:2758–2769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65:137–150

    Article  CAS  PubMed  Google Scholar 

  76. Xie Q, Sanz-Burgos AP, Guo H, García JA, Gutiérrez C (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol 39:647–656

    Article  CAS  PubMed  Google Scholar 

  77. Suyal G, RanaVS, Mukherjee SK, Wajid S, Choudhury NR (2014) Arabidopsis thaliana NAC083 protein interacts with Mungbean yellow mosaic India virus (MYMIV) Rep protein. Virus Genes. doi:10.1007/s11262-013-1028-6

  78. Shen W, Hanley-Bowdoin L (2006) Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. Plant Physiol 142:1642–1655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777–788

    Article  CAS  PubMed  Google Scholar 

  80. Briddon RW, Stanley J (2006) Subviral agents associated with plant single stranded DNA viruses. Virology 344:198–210

    Article  CAS  PubMed  Google Scholar 

  81. Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J (2000) A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci USA 97:6890–6895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Briddon RW, Bull SE, Amin I, Idris AM, Mansoor S, Bedford ID, Dhawan P, Rishi N, Siwatch SS, Abdel-Salam AM, Brown JK, Zafar Y, Markham PG (2003) Diversity of DNA β, a satellite molecule associated with some monopartite begomoviruses. Virology 312:106–121

    Article  CAS  PubMed  Google Scholar 

  83. Dry IB, Krake LR, Rigden JE, Rezaian MA (1997) A novel subviral agent associated with a geminivirus: The first report of a DNA satellite. Proc Natl Acad Sci USA 94:7088–7093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Lin B, Behjatnia SAA, Dry IB, Randles JW, Rezaian MA (2003) High-affinity rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305:353–363

    Article  CAS  PubMed  Google Scholar 

  85. Briddon RW, Bull SE, Amin I, Mansoor S, Bedford ID, Rishi N, Siwatch SS, Zafar Y, Abdel-Salam AM, Markham PG (2004) Diversity of DNA 1: a satellite-like molecule associated with monopartite begomovirus-DNA β complexes. Virology 324:462–474

    Article  CAS  PubMed  Google Scholar 

  86. Saunders K, Stanley J (1999) A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides: evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152

    Article  CAS  PubMed  Google Scholar 

  87. Paprotka T, Metzler V, Jeske H (2010) The first DNA 1-like α satellites in association with New World begomoviruses in natural infections. Virology 404:148–157

    Article  CAS  PubMed  Google Scholar 

  88. Romay G, Chirinos D, Geraud-Pouey F, Desbiez C (2010) Association of an atypical alphasatellite with a bipartite New World begomovirus. Arch Virol 155:1843–1847

    Article  CAS  PubMed  Google Scholar 

  89. Qing L, Zhou X (2009) Trans-replication of, and competition between, DNA β satellites in plants inoculated with tomato yellow leaf curl china virus and tobacco curly shoot virus. Phytopathology 99:716–720

    Article  CAS  PubMed  Google Scholar 

  90. Saunders K, Briddon RW, Stanley J (2008) Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication. J Gen Virol 89:3165–3172

    Article  CAS  PubMed  Google Scholar 

  91. Patil BL, Fauquet CM (2010) Differential interaction between cassava mosaic geminiviruses and geminivirus satellites. J Gen Virol 91:1871–1882

    Article  CAS  PubMed  Google Scholar 

  92. Nawaz-ul-Rehman MS, Mansoor S, Briddon RW, Fauquet CM (2009) Maintenance of an Old World betasatellite by a New World helper begomovirus and possible rapid adaptation of the betasatellite. J Virol 83:9347–9355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Saeed M, Behjatnia SAA, Mansoor S, Zafar Y, Hasnain S, Rezaian MA (2005) A single complementary-sense transcript of a geminiviral DNA β satellite is determinant of pathogenicity. Mol Plant Microbe Interact 18:7–14

    Article  CAS  PubMed  Google Scholar 

  94. Li D, Behjatnia SAA, Dry IB, Randles JW, Eini O, Rezaian MA (2007) Genomic regions of tomato leaf curl virus DNA satellite required for replication and for satellite mediated delivery of heterologous DNAs. J Gen Virol 88:2073–2077

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

IR is thankful to Department of Biotechnology (DBT), India, for funding her scholarship.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nirupam Roy Choudhury or Narendra Tuteja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizvi, I., Choudhury, N.R. & Tuteja, N. Insights into the functional characteristics of geminivirus rolling-circle replication initiator protein and its interaction with host factors affecting viral DNA replication. Arch Virol 160, 375–387 (2015). https://doi.org/10.1007/s00705-014-2297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2297-7

Keywords

Navigation