Skip to main content
Log in

Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the \((3+1)\)-dimensional generalized Kadomtsev–Petviashvili equation

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

With the Hirota bilinear method and symbolic computation, we investigate the \((3+1)\)-dimensional generalized Kadomtsev–Petviashvili equation. Based on its bilinear form, the bilinear Bäcklund transformation is constructed, which consists of four equations and five free parameters. The Pfaffian, Wronskian and Grammian form solutions are derived by using the properties of determinant. As an example, the one-, two- and three-soliton solutions are constructed in the context of the Pfaffian, Wronskian and Grammian forms. Moreover, the triangle function solutions are given based on the Pfaffian form solution. A few particular solutions are plotted by choosing the appropriate parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lü, X., Lin, F.H., Qi, F.H.: Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Backlund transformation and soliton solutions. Appl. Math. Model. 39, 3221–3226 (2015)

    Article  MathSciNet  Google Scholar 

  2. Lü, X.: Madelung fluid description on a generalized mixed nonlinear Schrodinger equation. Nonlinear Dyn. 81, 239–247 (2015)

    Article  MathSciNet  Google Scholar 

  3. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  4. Hua, Y.F., Guo, B.L., Ma, W.X., Lü, X.: Interaction behavior associated with a generalized \((2+1)\)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    Article  MathSciNet  Google Scholar 

  5. Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 31, 40–46 (2016)

    Article  MathSciNet  Google Scholar 

  6. Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alphahelical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simul. 32, 241–261 (2016)

    Article  MathSciNet  Google Scholar 

  7. Tabachnikov, Serge: On centro-affine curves and Bäcklund transformations of the KdV equation. Arnold Math. J. 4, 445–458 (2018)

    Article  MathSciNet  Google Scholar 

  8. Yin, Y.H., Ma, W.X., Liu, J.G., Lü, X.: Diversity of exact solutions to a \((3+1)\)-dimensional nonlinear evolution equation and its reduction. Comput. Math. Appl. 76, 1275–1283 (2018)

    Article  MathSciNet  Google Scholar 

  9. Lü, X., Ma, W.X., Yu, J., Lin, F., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model. Nonlinear Dyn. 82, 1211–1220 (2015)

    Article  MathSciNet  Google Scholar 

  10. Xu, H.N., Ruan, W.Y., Zhang, Y., Lü, X.: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior. Appl. Math. Lett. 99, 105976 (2020)

    Article  MathSciNet  Google Scholar 

  11. Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comput. Math. Appl. 72, 1225–1229 (2016)

    Article  MathSciNet  Google Scholar 

  12. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85(2), 1217–1222 (2016)

    Article  MathSciNet  Google Scholar 

  13. Lü, X., Chen, S.T., Ma, W.X.: Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation. Nonlinear Dyn. 86(1), 523–534 (2016)

    Article  MathSciNet  Google Scholar 

  14. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the \((3+1)\)-dimensional Hirota–Satsuma–Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    Article  MathSciNet  Google Scholar 

  15. Xia, J.W., Zhao, Y.W., Lü, X.: Predictability, fast calculation and simulation for the interaction solution to the cylindrical Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 90, 105260 (2020)

    Article  MathSciNet  Google Scholar 

  16. Tang, Y., Tao, S., Zhou, M., Guan, Q.: Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations. Nonlinear Dyn. 89, 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  17. Ma, W.X.: Lump and interaction solutions to linear PDEs in \((2+1)\)-dimensions via symbolic computation. Mod. Phys. Lett. B 33, 1950457 (2019)

    Article  MathSciNet  Google Scholar 

  18. Chen, S.J., Yin, Y.H., Ma, W.X., Lü, X.: Abundant exact solutions and interaction phenomena of the \((2+1)\)-dimensional YTSF equation. Anal. Math. Phys. 9, 2329–2344 (2019)

    Article  MathSciNet  Google Scholar 

  19. Tang, Y.N., Ma, W.X., Xu, W.: Grammian and Pfaffian solutions as well as Pfaffianization for a \((3+1)\)-dimensional generalized shallow water equation. Chin. Phys. B 21, 89–95 (2012)

    Google Scholar 

  20. Asaad, M.G., Ma, W.X.: Pfaffian solutions to a \((3+1)\)-dimensional generalized B-type Kadomtsev–Petviashvili equation and its modified counterpart. Appl. Math. Comput. 218, 5524–5542 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Zhang, L., Lin, Y.Z., Liu, Y.P.: New solitary wave solutions for two nonlinear evolution equations. Comput. Math. Appl. 67, 1595–1606 (2014)

    Article  MathSciNet  Google Scholar 

  22. Sun, H.Q., Chen, A.H.: Lump and lump-kink solutions of the \((3+1)\)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations. Appl. Math. Lett. 68, 55–61 (2017)

    Article  MathSciNet  Google Scholar 

  23. Fokou, M., Kofané, T.C., Mohamadou, A.: The third-order perturbed Korteweg-de Vries equation for shallow water waves with a non-flat bottom. Eur. Phys. J. Plus 132, 410 (2017)

    Article  Google Scholar 

  24. Wintermeyer, N., Winters, A.R., Gassner, G.J., et al.: An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry. J. Comput. Phys. 340, 200–242 (2017)

    Article  MathSciNet  Google Scholar 

  25. Wabnitz, S.: Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion. J. Opt. 15, 064002 (2013)

    Article  Google Scholar 

  26. Johansen, T.A., Ruud, B.O.: Characterization of seabed properties from Scholte waves acquired on floating ice on shallow water. Near Surf. Geophys. 18, 49–59 (2020)

    Article  Google Scholar 

  27. Ma, W.X., Fan, E.: Linear superposition principle applying to Hirota bilinear equations. Comput. Math. Appl. 61, 950–959 (2011)

    Article  MathSciNet  Google Scholar 

  28. Ma, W.X., Abdeljabbar, A., Asaad, M.G.: Wronskian and Grammian solutions to a \((3+1)\)-dimensional generalized KP equation. Appl. Math. Comput. 217, 10016–10023 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Ma, W.X., Xia, T.C.: Pfaffianized systems for a generalized Kadomtsev–Petviashvili equation. Phys. Scr. 87, 055003 (2013)

    Article  Google Scholar 

  30. Ma, W.X., Abdeljabbar, A.: A bilinear Bäcklund transformation of a \((3+1)\)-dimensional generalized KP equation. Appl. Math. Lett. 25, 1500–1504 (2012)

    Article  MathSciNet  Google Scholar 

  31. Gao, L.N., Zi, Y.Y., Yin, Y.H., Ma, W.X., Lü, X.: Bäcklund transformation, multiple wave solutions and lump solutions to a \((3+1)\)-dimensional nonlinear evolution equation. Nonlinear Dyn. 89, 2233–2240 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities of China (2018RC031), the National Natural Science Foundation of China under Grant No. 71971015, and the Program of the Co-Construction with Beijing Municipal Commission of Education of China (Grant Nos. B19H100010 and B18H100040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Lü or Meng-Gang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability statement

All data, models, and code generated or used during the study appear in the submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, XJ., Lü, X. & Li, MG. Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the \((3+1)\)-dimensional generalized Kadomtsev–Petviashvili equation. Anal.Math.Phys. 11, 4 (2021). https://doi.org/10.1007/s13324-020-00414-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00414-y

Keywords

Mathematics Subject Classification

Navigation