Skip to main content

Advertisement

Log in

Aquaculture expansion in Brazilian freshwaters against the Aichi Biodiversity Targets

  • Review
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

The Convention on Biological Diversity proposed the Aichi Biodiversity Targets to improve conservation policies and to balance economic development, social welfare, and the maintenance of biodiversity/ecosystem services. Brazil is a signatory of the Aichi Biodiversity Targets and is the most diverse country in terms of freshwater fish, but its national policies have supported the development of unsustainable commercial and ornamental aquaculture, which has led to serious disturbances to inland ecosystems and natural resources. We analyzed the development of Brazilian aquaculture to show how current aquaculture expansion conflicts with all 20 Aichi Targets. This case suggests that Brazil and many other megadiverse developing countries will not meet international conservation targets, stressing the need for new strategies, such as the environmental management system, to improve biodiversity conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agostinho, A.A., L.C. Gomes, H.I. Suzuki, and H.F. Júlio-Jr. 1999. Riscos da implantação de cultivos de espécies exóticas em tanques-redes em reservatórios do Rio Iguaçu. Cadernos da Biodiversidade 2: 1–9.

    Google Scholar 

  • Agostinho, A.A., S.M. Thomaz, and L.C. Gomes. 2005. Conservation of the biodiversity of Brazil’s inland waters. Conservation Biology 19: 646–652. https://doi.org/10.1111/j.1523-1739.2005.00701.x.

    Article  Google Scholar 

  • Agostinho, A.A., L.C. Gomes, and F.M. Pelicice. 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Maringá: EDUEM.

    Google Scholar 

  • Agostinho, A.A., L.C. Gomes, N.C.L. Santos, J.C.G. Ortega, and F.M. Pelicice. 2016. Fish assemblages in neotropical reservoirs: Colonization patterns, impacts and management. Fisheries Research 173: 26–36.

    Article  Google Scholar 

  • Alves, A.L., E.S. Varela, G.V. Moro, and L.N.G. Kirschnik. 2014. Riscos genéticos da produção de híbridos de peixes nativos. Palmas: Embrapa Pesca e Aquicultura.

    Google Scholar 

  • Australia Productivity Commission. 2004. Assessing environmental regulatory arrangements for aquaculture. Melbourne, VIC: Productivity Commission.

    Google Scholar 

  • Azevedo-Santos, V.M., O. Rigolin-Sá, and F.M. Pelicice. 2011. Growing, losing or introducing? Cage aquaculture as a vector for the introduction of non-native fish in Furnas Reservoir, Minas Gerais, Brazil. Neotropical Ichthyology 9: 915–919. https://doi.org/10.1590/S1679-62252011000400024.

    Article  Google Scholar 

  • Azevedo-Santos, V.M., F.M. Pelicice, D.P. Lima-Junior, A.L.B. Magalhães, M.L. Orsi, J.R.S. Vitule, and A.A. Agostinho. 2015. How to avoid fish introductions in Brazil: Education and information as alternatives. Natureza & Conservação 13: 123–132. https://doi.org/10.1016/j.ncon.2015.06.002.

    Article  Google Scholar 

  • Azevedo-Santos, V.M., P.M. Fearnside, C.S. Oliveira, A.A. Padial, F.M. Pelicice, D.P. Lima-Junior, D. Simberloff, T.E. Lovejoy, et al. 2017. Removing the abyss between conservation science and policy decision in Brazil. Biodiversity and Conservation 26: 1745–1752. https://doi.org/10.1007/s10531-017-1316-x.

    Article  Google Scholar 

  • Braga, R.R., L. Gómez-Aparicio, T. Heger, J.R.S. Vitule, and J.M. Jeschke. 2017. Structuring evidence for invasional meltdown: Broad support but with biased and gaps. Biological Invasions. https://doi.org/10.1007/s10530-017-1582-2.

    Google Scholar 

  • Brengballe, J. 2015. A guide to recirculation aquaculture. http://www.fao.org/3/a-i4626e.pdf. Accessed 26 Oct 2017.

  • Britton, J.R., and M.L. Orsi. 2012. Non-native fish in aquaculture and sport fishing in Brazil: Economic benefits versus risks to fish diversity in the upper River Paraná Basin. Reviews in Fish Biology and Fisheries 22: 555–565. https://doi.org/10.1007/s11160-012-9254-x.

    Article  Google Scholar 

  • Bueno, G.W., A. Ostrensky, C. Canzi, F.T. de Matos, and R. Roubach. 2015. Implementation of aquaculture parks in Federal Government waters in Brazil. Reviews in Aquaculture 7: 1–12. https://doi.org/10.1111/raq.12045.

    Article  Google Scholar 

  • Bush, S.R., B. Belton, D. Hall, P. Vandergeest, F.J. Murray, S. Ponte, P. Oosterveer, M.S. Islan, et al. 2013. Certify sustainable aquaculture? Science 341: 1067–1068. https://doi.org/10.1126/science.1237314.

    Article  CAS  Google Scholar 

  • Cabello, F.C. 2006. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for environment. Environmental Microbiology 8: 1137–1144.

    Article  CAS  Google Scholar 

  • Canonico, G.C., A. Arthington, J.K. McCrary, and M.L. Thieme. 2005. The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 463–483. https://doi.org/10.1002/aqc.699.

    Article  Google Scholar 

  • Casal, C.M.V. 2006. Global documentation of fish introductions: The growing crisis and recommendations for action. Biological Invasions 8: 3–11. https://doi.org/10.1007/s10530-005-0231-3.

    Article  Google Scholar 

  • Coelho, P.N., and R. Henry. 2017. The small foreigner: New laws will promote the introduction of non-native zooplankton in Brazilian aquatic environments. Acta Limnologica Brasiliensia 29: e7. https://doi.org/10.1590/s2179-975x0717.

    Article  Google Scholar 

  • Colombia, 2015. Resulución 2287 de 2015. Autoridad Nacional de Acuicultura y Pesca:Por la cual se declaran unas especies de peces como domesticadas para el desarrollo de la acuicultura y se dictan otras disposiciones. http://legal.legis.com.co/document?obra=legcol&document=legcol_14790d1a48434c769e252071249e97d4.

  • Córdova-Tapia, F., M. Contreras, and L. Zambrano. 2015. Trophic niche overlap between native and non-native fishes. Hydrobiologia 746: 291–301.

    Article  Google Scholar 

  • Cucherousset, J., and J.D. Olden. 2011. Ecological impacts of non-native freshwater fishes. Fisheries 36: 215–230. https://doi.org/10.1080/03632415.2011.574578.

    Article  Google Scholar 

  • Daga, V.S., F. Skóra, A.A. Padial, V. Abilhoa, E.A. Gubiani, and J.R.S. Vitule. 2015. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: Comparing the roles of introduced species and their vectors. Hydrobiologia 746: 327–347. https://doi.org/10.1007/s10750-014-2032-0.

    Article  Google Scholar 

  • David, G.S., E.D. Carvalho, D. Lemos, A.N. Silveira, and M. Dall’Aglio-Sobrinho. 2015. Ecological carrying capacity for intensive tilapia (Oreochromis niloticus) cage aquaculture in a large hydroelectrical reservoir in Southeastern Brazil. Aquaculture Engineering 66: 30–40.

    Article  Google Scholar 

  • Deines, A.M., M.E. Wittmann, J.M. Deines, and D.M. Lodge. 2016. Tradeoffs among ecosystem services associated with global tilapia introductions. Reviews in Fisheries Science & Aquaculture 24: 178–191. https://doi.org/10.1080/23308249.2015.1115466.

    Article  Google Scholar 

  • Diana, J.S. 2009. Aquaculture production and biodiversity conservation. BioScience 59: 27–38. https://doi.org/10.1525/bio.2009.59.1.7.

    Article  Google Scholar 

  • Di Marco, M., S.H.M. Butchart, P. Visconti, G.M. Buchanan, G.F. Ficetola, and C. Rondinini. 2015. Synergies and trade-offs in achieving global biodiversity targets. Conservation Biology 30: 189–195. https://doi.org/10.1111/cobi.12559.

    Article  Google Scholar 

  • EPA. 2017. Guide to developing and Environmental Management System—Plan. http://faostat3.fao.org/. Accessed 26 Oct 2017.

  • FAO. 2016. The state of world fisheries and aquaculture: Contributing to food security and nutrition for all. Rome: FAO.

    Google Scholar 

  • Fearnside, P.M. 2016. Brazilian politics threaten environmental policies. Science 353: 746–748. https://doi.org/10.1126/science.aag0254.

    Article  CAS  Google Scholar 

  • Figueredo, C.C., and A. Giani. 2005. Ecological interaction between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology 50: 1391–1403. https://doi.org/10.1111/j.1365-2427.2005.01407.x.

    Article  Google Scholar 

  • Forneck, S.C., F.M. Dutra, C.E. Zacarkim, and A.M. Cunico. 2016. Invasion risks by non-native freshwater fishes due to aquaculture activity in a neotropical stream. Hydrobiologia 773: 193–205.

    Article  Google Scholar 

  • Frehse, F.A., R.R. Braga, G.A. Nocera, and J.R.S. Vitule. 2016. Non-native species and invasion biology in a megadiverse country: Scientometric analysis and ecological interactions in Brazil. Biological Invasions 18: 3713–3725. https://doi.org/10.1007/s10530-016-1260-9.

    Article  Google Scholar 

  • Garcia, F., J.M. Kimpara, W.C. Valenti, and L.A. Ambrosio. 2014. Emergy assessment of tilapia cage farming in a hydroelectric reservoir. Ecological Engineering 68: 72–79.

    Article  Google Scholar 

  • Governo de Mato Grosso. 2017. Diário Oficial do Estado de Mato Grosso: Decreto 1190/2017. https://www.legisweb.com.br/legislacao/?id=350177. Accessed 26 Oct 2017.

  • Governo de Tocantins. 2016. Alteração da Resolução COEMA/TO No 27, de 22 de Novembro de 2011. https://www.legisweb.com.br/legislacao/?id=172017. Accessed 26 Oct 2017.

  • Hallwass, G., P.L. Lopes, A.A. Juras, and R.A.M. Silvano. 2013. Fishers’ knowledge identifies environmental changes and fish abundance trends in impounded tropical rivers. Ecological Applications 23: 392–407. https://doi.org/10.1890/12-0429.1.

    Article  Google Scholar 

  • Hashimoto, D.T., J.A. Senhorini, F. Foresti, and F. Porto-Foresti. 2012. Interspecific fish hybrids in Brazil: Management of genetic resources for sustainable use. Reviews in Aquaculture 4: 108–118. https://doi.org/10.1111/j.1753-5131.2012.01067.x.

    Article  Google Scholar 

  • Havel, J.E., C.E. Lee, and J. Vander Zanden. 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.

    Article  Google Scholar 

  • IBGE. 2016. Produção da pecuária municipal. Rio de Janeiro: IBGE.

    Google Scholar 

  • Jarić, L., and G. Cvijanović. 2012. The tens rule in invasion biology: Measure of a true impact or our lack of knowledge and understanding. Environmental Management 50: 979–981.

    Article  Google Scholar 

  • Jensen, Ø., T. Dempster, E.B. Thorstad, I. Uglem, and A. Fredheim. 2010. Escapes of fishes from Norwegian sea-cage aquaculture: Cause, consequences and prevention. Aquaculture Environment Interactions 1: 71–83. https://doi.org/10.3354/aei00008.

    Article  Google Scholar 

  • Jeschke, J.M., L. Gómez Aparicio, S. Haider, T. Heger, C.J. Lortie, P. Pyšek, and D.L. Strayer. 2012. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14: 1–20.

    Article  Google Scholar 

  • Johnson, P.T., J.D. Olden, and M.J. Vander Zanden. 2008. Dam invaders: Impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment 6: 357–363. https://doi.org/10.1890/070156.

    Article  Google Scholar 

  • Jones, A.C., A. Mead, M.J. Kaiser, M.C.V. Austen, A.W. Adrian, N.A. Auchterlonie, K.D. Black, L.C. Blow, et al. 2015. Prioritization of knowledge needs for sustainable aquaculture: A national and global perspective. Fish and Fisheries 16: 668–683. https://doi.org/10.1111/faf.12086.

    Article  Google Scholar 

  • Joppa, L.N., P. Visconti, C.N. Jenkins, and S.L. Pimm. 2013. Achieving the convention on biological diversity’s goals for plant conservation. Science 341: 1100–1103. https://doi.org/10.1126/science.1241706.

    Article  CAS  Google Scholar 

  • Klinger, D., and R. Naylor. 2012. Searching for solutions in aquaculture: Charting a sustainable course. Annual Review of Environment and Resources 37: 247–276. https://doi.org/10.1146/annurev-environ-021111-161531.

    Article  Google Scholar 

  • Liew, J.H., H.H. Tan, and D.C.J. Yeo. 2016. Dammed rivers: Impoundments facilitate fish invasions. Freshwater Biology 61: 1421–1429. https://doi.org/10.1111/fwb.12781.

  • Lima, L.B., F.J.M. Oliveira, H.C. Giacomini, and D.P. Lima-Junior. 2016. Expansion of aquaculture parks and the increasing risk of non-native species invasions in Brazil. Reviews in Aquaculture. https://doi.org/10.1111/raq.12150.

    Google Scholar 

  • Lima-Junior, D.P., L.B. Lima, J.R.S. Vitule, M.L. Orsi, and V.M. Azevedo-Santos. 2014. Modificação das diretrizes do CONAMA no 413/2009 sobre o licenciamento ambiental da aquicultura: retirando os “obstáculos normativos” para a criação de espécies não nativas em águas continentais brasileiras. Boletim da Associação Brasileira de Limnologia 40: 3–11.

    Google Scholar 

  • Lin, Y., Z. Gao, and A. Zhan. 2013. Introduction and use of non-native species for aquaculture in China: Status, risks and management solutions. Reviews in Aquaculture 7: 28–58. https://doi.org/10.1111/raq.12052.

    Article  Google Scholar 

  • Mace, G.M., K. Norris, and A.H. Fitter. 2012. Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology & Evolution 27: 19–25. https://doi.org/10.1016/j.tree.2011.08.006.

    Article  Google Scholar 

  • Magalhães, A.L.B., and C.M. Jacobi. 2013. Asian aquarium fishes in a Neotropical biodiversity hotspot: Impeding establishment, spread and impacts. Biological Invasions 15: 2157–2163. https://doi.org/10.1007/s10530-013-0443-x.

    Article  Google Scholar 

  • Magalhães, A.L.B., and C.M. Jacobi. 2017. Colorful invasion in permissive Neotropical ecosystems: Establishment of ornamental non-native poeciliids of the genera Poecilia/Xiphophorus (Cyprinodontiformes: Poeciliidae) and management alternatives. Neotropical Ichthyology 15: e160094. https://doi.org/10.1590/1982-0224-20160094.

    Google Scholar 

  • MFA. 2012. Instrução normativa interministerial no1 de 3 de Janeiro de 2012. Diário Oficial da União 3: 26–42.

    Google Scholar 

  • Montanhini Neto, R., H.R. Nocko, and A. Ostrensky. 2015. Environmental characterization and impacts of fish farming in the cascade reservoirs of the Paranapanema river, Brazil. Aquaculture Environment Interactions 6: 255–272.

    Article  Google Scholar 

  • Moura, R.S.T., W.C. Valenti, and G.G. Henry-Silva. 2016. Sustainability of Nile tilapia net-cage culture in a reservoir in a semi-arid region. Ecological Indicators 66: 574–582. https://doi.org/10.1016/j.ecolind.2016.01.052.

    Article  Google Scholar 

  • Naylor, R.L., R.J. Goldburg, and J.H. Primavera. 2000. Effect of aquaculture on world fish supplies. Nature 405: 1017–1024. https://doi.org/10.1038/35016500.

    Article  CAS  Google Scholar 

  • Naylor, R.L., S.L. Williams, and D.R. Strong. 2001. Aquaculture—a gateway for exotic species. Science 294: 1655–1656. https://doi.org/10.1126/science.1064875.

    Article  CAS  Google Scholar 

  • Naylor, R., K. Hindar, F. Fleming, R. Goldburg, S. Williams, J. Volpe, F. Whoriskey, et al. 2005. Fugitive salmon: Assessing the risks of escaped fish from net-pen aquaculture. BioScience 55: 427–437.

    Article  Google Scholar 

  • O’Bryen, P.J., and C.S. Lee. 2003. Management of aquaculture effluents workshop discussion summary. Aquaculture 226: 227–242. https://doi.org/10.1016/S0044-8486(03)00480-0.

    Article  Google Scholar 

  • Occhi, T.V.T., L.A. Faria, and J.R.S. Vitule. 2017. Native or non-native? That is the question: A complementary discussion to Saint-Paul (2017). Acta of Fisheries and Aquatic Resources 5: xii–xvi.

    Google Scholar 

  • Ochoa-Ochoa, L.M., O.A. Flores-Villela, C.A. Ríos-Muñoz, J. Arroyo-Cabrales, and M. Martínez-Gordillo. 2017. Mexico’s ambiguous invasive species plan. Science 355: 1033. https://doi.org/10.1126/science.aam9400.

    Article  CAS  Google Scholar 

  • Ortega, J.C.G., H.F. Júlio Jr., L.C. Gomes, and A.A. Agostinho. 2015. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia 746: 147–158. https://doi.org/10.1007/s10750-014-2025-z.

    Article  Google Scholar 

  • Padial, A.A., A.A. Agostinho, V.M. Azevedo-Santos, F.A. Frehse, D.P. Lima-Junior, A.L.B. Magalhães, R.P. Mormul, F.M. Pelicice, et al. 2017. The “Tilapia Law” encouraging non-native fish threatens Amazonian river basins. Biodiversity and Conservation 26: 243–246. https://doi.org/10.1007/s10531-017-1316-x.

    Article  Google Scholar 

  • Pant, J., B.K. Barman, K. Murshed-E-Jahan, B. Belton, and M. Beveridge. 2014. Can aquaculture benefit the extreme poor? A case study of landless and socially marginalized Adivasi (ethnic) communities in Bangladesh. Aquaculture 418–419: 1–10.

    Article  Google Scholar 

  • Pedroza-Filho, M.X., R.M. Barroso, R.M. Valadão-Flores, and A.P. Silva. 2014a. Diagnóstico da cadeia produtiva da piscicultura no estado de Tocantins. Palmas: EMBRAPA Pesca e Aquicultura.

    Google Scholar 

  • Pedroza-Filho, M.X., R.M. Barroso, and R.M. Valadão Flores. 2014b. Effects of non-tariff barriers on Brazilian fisheries exports to the European Union. Agroalimentaria 20: 35–52.

    Google Scholar 

  • Pedroza-Filho, M.X., R.M. Valadão-Flores, A.O. Rodrigues, and F.P. Rezende. 2015. Análise comparativa de resultados econômicos dos polos piscicultores no segundo trimestre de 2015. Palmas: EMBRAPA Pesca e Aquicultura.

    Google Scholar 

  • Pelicice, F.M., J.R.S. Vitule, D.P. Lima-Junior, M.L. Orsi, and A.A. Agostinho. 2014. Serious new threat to Brazilian freshwater ecosystems: The naturalization of nonnative fish by decree. Conservation Letters 7: 55–60. https://doi.org/10.1111/conl.12029.

    Article  Google Scholar 

  • Pelicice, F.M., V.M. Azevedo-Santos, J.R.S. Vitule, M.L. Orsi, D.P. Lima-Junior, A.L.B. Magalhães, P.S. Pompeu, M. Petrere-Junior, et al. 2017. Neotropical freshwater fishes imperilled by unsustainable policies. Fish and Fisheries 18: 1119–1133.

    Article  Google Scholar 

  • Petesse, M.L., and M. Petrere Jr. 2012. Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietê river basin, Brazil. Ecological Engineering 48: 109–116. https://doi.org/10.1016/j.ecoleng.2011.06.033.

    Article  Google Scholar 

  • Pyšek, P., S. Bacher, M. Chytrý, V. Vojtěch, J. Wild, L. Celesti-Grapow, N. Gassó, M. Kenis, et al. 2010. Constrasting patterns in the invasion of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecology and Biogeography 19: 317–331.

    Article  Google Scholar 

  • Rosa, R.S., A.C. Aguiar, I.G. Boëchat, and B. Gücker. 2013. Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams. Environmental Pollution 174: 204–213.

    Article  CAS  Google Scholar 

  • Saint-Paul, D. 2017. Native fish species boosting Brazilian’s aquaculture development. Acta of Fisheries and Aquatic Resources 5: 1–9.

    Google Scholar 

  • Sampaio, F.D.F., C.A. Freire, T.V. Sampaio, J.R.S. Vitule, and F.F. Luís. 2015. The precautionary principle and its approach to risk analysis and quarantine related to the trade of marine ornamental fish in Brazil. Marine Policy 51: 163–168. https://doi.org/10.1016/j.marpol.2014.08.003.

    Article  Google Scholar 

  • São Paulo. 2016. Instituto de Pesca de São Paulo – Portaria: Dispõe sobre a lista de espécies aquícolas alóctones, exóticas e híbridos cultiváveis no Estado de São Paulo.

  • Scarano, F., A. Guimarães, and J.M. Silva. 2012. Rio + 20: Lead by example. Nature 486: 25–26. https://doi.org/10.1038/486025a.

    Article  CAS  Google Scholar 

  • Sepúlveda, M., I. Arismendi, D. Soto, F. Jara, and F. Faria. 2013. Escaped farmed salmon and trout in Chile: Incidence, impacts and the need for an ecosystem view. Aquaculture Environment Interactions 4: 273–283. https://doi.org/10.3354/aei00089.

    Article  Google Scholar 

  • Simberloff, D., and B. Von Holle. 1999. Positive interactions on nonindigenous species: Invasional meltdown? Biological Invasions 1: 21–32. https://doi.org/10.1023/A:1010086329619.

    Article  Google Scholar 

  • Starling, F., X. Lazzaro, C. Cavalcanti, and R. Moreira. 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: Evidence from a fish kill. Freshwater Biology 47: 2443–2452. https://doi.org/10.1046/j.1365-2427.2002.01013.x.

    Article  Google Scholar 

  • Thorvaldsen, T., I.M. Holmen, and H.K. Moe. 2015. The escape of fish from Norwegian fish farms: Causes, risks and influence of organisational aspects. Marine Policy 55: 33–38. https://doi.org/10.1016/j.marpol.2015.01.008.

    Article  Google Scholar 

  • Titensor, D., M. Walpole, S.L.L. Hill, D.G. Boyce, G.L. Britten, N.D. Burgess, S.H.M. Butchart, P.W. Leadley, et al. 2014. A mid-tern analysis of progress toward international biodiversity targets. Science 346: 241–244. https://doi.org/10.1126/science.1257484.

    Article  Google Scholar 

  • Tollefson, J. 2016. Political upheaval threatens Brazil’s environmental protections. Nature 539: 147–148. https://doi.org/10.1038/539147a.

    Article  CAS  Google Scholar 

  • Troell, M., R.L. Naylor, M. Metian, M. Beveridge, P.H. Tyedmers, C. Folke, K.W. Arrow, S. Barret, et al. 2014. Does aquaculture add resilience to global food system? Proceedings of the National Academy of Sciences 111: 13257–13263. https://doi.org/10.1073/pnas.1404067111.

    Article  CAS  Google Scholar 

  • Valadão Flores, R.M.V., and M.X. Pedroza Filho. 2014. Is the internal market able to accommodate the strong growth projected for Brazilian Aquaculture? Journal of Agricultural Science and Technology 4: 407–417.

    Google Scholar 

  • Valladão, G.M.R., S. Umeda, and F. Pilarski. 2016. South American fish for continental aquaculture. Reviews in Aquaculture. https://doi.org/10.1111/raq.12164.

    Google Scholar 

  • Vitule, J.R.S., C.A. Freire, and D. Simberloff. 2009. Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10: 98–108. https://doi.org/10.1111/j.1467-2979.2008.00312.x.

    Article  Google Scholar 

  • Vitule, J.R.S., D.P. Lima-Junior, F.M. Pelicice, M.L. Orsi, and A.A. Agostinho. 2012. Ecology: Preserve Brazil’s aquatic biodiversity. Nature 485: 309. https://doi.org/10.1038/485309c.

    Article  CAS  Google Scholar 

  • Vitule, J.R.S., F.D.F. Sampaio, and A.L.B. Magalhães. 2014. Aquarium trade: Monitor Brazil’s fish sampling closely. Nature 513: 315. https://doi.org/10.1038/513315d.

    Article  CAS  Google Scholar 

  • Vitule, J.R.S., V.M. Azevedo-Santos, V.S. Daga, et al. 2015. Brazil’s drought: Protect biodiversity. Science 347: 1427–1428. https://doi.org/10.1126/science.347.6229.1427-b.

    Article  Google Scholar 

  • Watson, R.A., D. Zeller, and D. Pauly. 2014. Primary productivity demands of global fishing fleets. Fish and Fisheries 15: 231–241. https://doi.org/10.1111/faf.12013.

    Article  Google Scholar 

  • Williamson, M., and A. Fitter. 1996. The varying success of invaders. Ecology 77: 1661–1666.

    Article  Google Scholar 

  • Zhang, X., X. Mei, and R.D. Gulati. 2017. Effects of omnivorous tilapia on water turbidity and primary production dynamics in shallow lakes: Implication for ecosystem management. Review in Fish Biology and Fisheries 27: 245–254. https://doi.org/10.1007/s11160-016-9458-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Edson Kiyoshi Okada for providing the photo and anonymous reviewers for helpful suggestions on the manuscript. André L. B. Magalhães and Valter M. Azevedo-Santos received CAPES scholarships, and Dilermando P. Lima Jr, Fernando M. Pelicice, Jean R. S. Vitule, and Angelo A. Agostinho received CNPq research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilermando Pereira Lima Junior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima Junior, D.P., Magalhães, A.L.B., Pelicice, F.M. et al. Aquaculture expansion in Brazilian freshwaters against the Aichi Biodiversity Targets. Ambio 47, 427–440 (2018). https://doi.org/10.1007/s13280-017-1001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-017-1001-z

Keywords

Navigation