Skip to main content

Advertisement

Log in

Biomarkers of genome instability and cancer epigenetics

  • Review
  • Published:
Tumor Biology

Abstract

Tumorigenesis is a multistep process involving genetic and epigenetic alterations that drive somatic evolution from normal human cells to malignant derivatives. Collectively, genetic and epigenetic alterations might be combined into biomarkers for the assessment of risk, the detection of early stage tumors, and accurate tumor characterization before and after treatment. Recent efforts have provided systematic approaches to cancer genomics through the application of massive sequencing of specific tumor types. Here, we review biomarkers of genome instability and epigenetics. Cancer evolvability and adaptation emerge through genetic and epigenetic lesions of a variety of sizes and qualities—from point mutations and small insertions/deletions to large-scale chromosomal rearrangements, alterations in whole chromosome copy number, preferential allelic expression of cancer risk alleles, and mechanisms that increase tumor mutation rates. We also review specific epigenetic mechanisms that facilitate or hinder tumor adaptation, including DNA methylation, histone modification, nucleosome remodeling, transcription factor activity, and small non-coding RNAs. Given the complexity of the carcinogenic process, the challenge ahead will be to interpret disparate signals across hundreds of genes and summarize these signals into a single actionable diagnosis that translates into specific treatments. Another challenge is to refine preventive efforts through the identification of epigenetic processes that mediate increased cancer rates in individuals exposed to sources of toxic environmental stress and pollution, specially through development and early childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Chappell G et al. Genetic and epigenetic changes in fibrosis-associated hepatocarcinogenesis in mice. Int J Cancer. 2014;134(12):2778–88.

  3. Hauptman N, Glavac D. MicroRNAs and long non-coding RNAs: prospects in diagnostics and therapy of cancer. Radiol Oncol. 2013;47(4):311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144((5):646–74.

    Article  CAS  PubMed  Google Scholar 

  5. Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 2013;8:277–302.

    Article  CAS  PubMed  Google Scholar 

  6. Almendro V et al. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 2014;6(3):514–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501(7467):338–45.

    Article  CAS  PubMed  Google Scholar 

  8. Huppi K et al. MicroRNAs and genomic instability. Semin Cancer Biol. 2007;17(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  9. Strand M, Prolla TA, Liskay RM, Petes TD. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993;365(6443):274–6.

    Article  CAS  PubMed  Google Scholar 

  10. Parsons R et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 1993;75(6):1227–36.

    Article  CAS  PubMed  Google Scholar 

  11. Heinimann K. Toward a molecular classification of colorectal cancer: the role of microsatellite instability status. Frontiers in Oncology. 2013;3:272.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Aplan PD. Causes of oncogenic chromosomal translocation. Trends in Genetics: TIG. 2006;22(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  13. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85–109.

    CAS  PubMed  Google Scholar 

  14. Hermans A et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell. 1987;51(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  15. Manolov G, Manolova Y. Marker band in one chromosome 14 from Burkitt lymphomas. Nature. 1972;237(5349):33–4.

    Article  CAS  PubMed  Google Scholar 

  16. Zech L, Haglund U, Nilsson K, Klein G. Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas. Int J Cancer. 1976;17(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  17. Unniraman S, Zhou S, Schatz DG. Identification of an AID-independent pathway for chromosomal translocations between the Igh switch region and Myc. Nat Immunol. 2004;5(11):1117–23.

    Article  CAS  PubMed  Google Scholar 

  18. Roschke AV, Rozenblum E. Multi-layered cancer chromosomal instability phenotype. Frontiers in oncology. 2013;3:302.

    Article  PubMed  PubMed Central  Google Scholar 

  19. McGranahan N, Burrell RA, Endesfelder D, Novelli MR, Swanton C. Cancer chromosomal instability: therapeutic and diagnostic challenges. EMBO Rep. 2012;13(6):528–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bettington M et al. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology. 2013;62(3):367–86.

    Article  PubMed  Google Scholar 

  21. Yamagishi H, Kuroda H, Imai Y, Hiraishi H. Molecular pathogenesis of sporadic colorectal cancers. Chinese Journal of Cancer. 2016;35(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Issa JP. Colon Cancer: it’s CIN or CIMP. Clinical Cancer Research: an official journal of the American Association for Cancer Research. 2008;14(19):5939–40.

    Article  Google Scholar 

  23. Karageorgos I et al. Identification of cancer predisposition variants in apparently healthy individuals using a next-generation sequencing-based family genomics approach. Human Genomics. 2015;9:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Loo LW et al. Cis-expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PloS one. 2012;7(2):e30477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sille FC, Thomas R, Smith MT, Conde L, Skibola CF. Post-GWAS functional characterization of susceptibility variants for chronic lymphocytic leukemia. PLoS One. 2012;7(1):e29632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y et al. Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol. 2010;11(4):321–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim HS, Minna JD, White MA. GWAS meets TCGA to illuminate mechanisms of cancer predisposition. Cell. 2013;152(3):387–9.

    Article  CAS  PubMed  Google Scholar 

  28. Hindorff LA, Gillanders EM, Manolio TA. Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis. 2011;32(7):945–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gray PN, Dunlop CL, Elliott AM. Not all next generation sequencing diagnostics are created equal: understanding the nuances of solid tumor assay design for somatic mutation detection. Cancers. 2015;7(3):1313–32.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Weinstein JN et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hudson TJ et al. International network of cancer genome projects. Nature. 2010;464(7291):993–8.

    Article  CAS  PubMed  Google Scholar 

  32. Verma M et al. Epigenetic research in cancer epidemiology: trends, opportunities, and challenges. Cancer Epidemiol Biomark Prev. 2013;23(2):223–33.

    Article  Google Scholar 

  33. Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet. 2010;70:277–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Uemura M et al. Overexpression of ribosomal RNA in prostate cancer is common but not linked to rDNA promoter hypomethylation. Oncogene. 2011;31(10):1254–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Delpu Y, Cordelier P, Cho WC. Torrisani J DNA methylation and cancer diagnosis. Int J Mol Sci. 2013;14(7):15029–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Belinsky SA et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A. 1998;95(20):11891–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wong IH et al. Detection of aberrant p16 methylation in the plasma and serum of liver cancer patients. Cancer Res. 1999;59(1):71–3.

    CAS  PubMed  Google Scholar 

  38. Zou HZ et al. Detection of aberrant p16 methylation in the serum of colorectal cancer patients. Clinical Cancer Research: an official journal of the American Association for Cancer Research. 2002;8(1):188–91.

    Google Scholar 

  39. Esteller M et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000a;343(19):1350–4.

    Article  CAS  PubMed  Google Scholar 

  40. Shen L et al. MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst. 2005;97(18):1330–8.

    Article  CAS  PubMed  Google Scholar 

  41. Harden SV, Guo Z, Epstein JI, Sidransky D. Quantitative GSTP1 methylation clearly distinguishes benign prostatic tissue and limited prostate adenocarcinoma. J Urol. 2003;169(3):1138–42.

    Article  CAS  PubMed  Google Scholar 

  42. Nakamichi I et al. Correlation between promoter hypermethylation of GSTP1 and response to chemotherapy in diffuse large B cell lymphoma. Ann Hematol. 2007;86(8):557–64.

    Article  CAS  PubMed  Google Scholar 

  43. Hashad DI, Hashad MM, Talaat IM, Ibrahim MA. Role of glutathione-S-transferase P1 hypermethylation in molecular detection of prostate cancer. Genet Test Mol Biomarkers. 2011;15(10):667–70.

    Article  CAS  PubMed  Google Scholar 

  44. Saxena A et al. GSTP1 methylation and polymorphism increase the risk of breast cancer and the effects of diet and lifestyle in breast cancer patients. Exp Ther Med. 2012;4(6):1097–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61(8):3225–9.

    CAS  PubMed  Google Scholar 

  46. Menigatti M et al. Methylation pattern of different regions of the MLH1 promoter and silencing of gene expression in hereditary and sporadic colorectal cancer. Genes Chromosomes Cancer. 2001;31(4):357–61.

    Article  CAS  PubMed  Google Scholar 

  47. Bischoff J et al. hMLH1 promoter hypermethylation and MSI status in human endometrial carcinomas with and without metastases. Clin Exp Metastasis. 2012;29(8):889–900.

    Article  CAS  PubMed  Google Scholar 

  48. Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor suppressor genes in ovarian cancer. Exp Ther Med. 2012;4(6):1092–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997;57(16):3347–50.

    CAS  PubMed  Google Scholar 

  50. Esteller M et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000a;92(7):564–9.

    Article  CAS  PubMed  Google Scholar 

  51. Bennett KL et al. Frequently methylated tumor suppressor genes in head and neck squamous cell carcinoma. Cancer Res. 2008;68(12):4494–9.

    Article  CAS  PubMed  Google Scholar 

  52. Grutzmann R et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One. 2008;3(11):e3759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lofton-Day C et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem. 2008;54(2):414–23.

    Article  CAS  PubMed  Google Scholar 

  54. Connolly D et al. Septin 9 isoform expression, localization, and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res. 2011;13(4):R76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ogino S et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer. 2008;122(12):2767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Igarashi S et al. A novel correlation between LINE-1 hypomethylation and the malignancy of gastrointestinal stromal tumors. Clinical Cancer Research: an official journal of the American Association for Cancer Research. 2010;16(21):5114–23.

    Article  CAS  Google Scholar 

  57. Martinez JG et al. Hypomethylation of LINE-1, and not centromeric SAT-alpha, is associated with centromeric instability in head and neck squamous cell carcinoma. Cell Oncol (Dordr). 2012;35(4):259–67.

    Article  CAS  Google Scholar 

  58. Nishida N et al. Unique association between global DNA hypomethylation and chromosomal alterations in human hepatocellular carcinoma. PLoS One. 2013;8(9):e72312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Raval A et al. Reduced rRNA expression and increased rDNA promoter methylation in CD34+ cells of patients with myelodysplastic syndromes. Blood. 2012;120(24):4812–8.

    Article  CAS  PubMed  Google Scholar 

  60. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  PubMed  Google Scholar 

  61. Ahuja N, Sharma AR, Baylin SB. Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med. 2016;67:73–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153(1):17–37.

    Article  CAS  PubMed  Google Scholar 

  63. Jaju RJ et al. A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia. Blood. 2001;98(4):1264–7.

    Article  CAS  PubMed  Google Scholar 

  64. Rosati R et al. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;p15). Blood. 2002;99(10):3857–60.

    Article  CAS  PubMed  Google Scholar 

  65. Stransky N et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barbieri CE et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet. 2012;44(6):685–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grasso CS et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hammerman PS et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.

    Article  CAS  Google Scholar 

  69. Peifer M et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44(10):1104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zang ZJ et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 2012;44(5):570–4.

    Article  CAS  PubMed  Google Scholar 

  71. Bernt KM et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 2011;20(1):66–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pasqualucci L et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Robinson DR et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med. 2011;17(12):1646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Choi JH et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res. 2001;92(12):1300–4.

    Article  CAS  PubMed  Google Scholar 

  75. Halkidou K et al. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate. 2004;59(2):177–89.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Z et al. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat. 2005;94(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  77. Burdelski C et al. HDAC1 overexpression independently predicts biochemical recurrence and is associated with rapid tumor cell proliferation and genomic instability in prostate cancer. Exp Mol Pathol. 2015;98(3):419–26.

    Article  CAS  PubMed  Google Scholar 

  78. Zhu P et al. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell. 2004;5(5):455–63.

    Article  CAS  PubMed  Google Scholar 

  79. Song J et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS. 2005;113(4):264–8.

    Article  CAS  PubMed  Google Scholar 

  80. Huang R et al. The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget. 2016;7(4):4695–711.

    PubMed  Google Scholar 

  81. Wilson AJ et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem. 2006;281(19):13548–58.

    Article  CAS  PubMed  Google Scholar 

  82. Jiao F et al. Aberrant expression of nuclear HDAC3 and cytoplasmic CDH1 predict a poor prognosis for patients with pancreatic cancer. Oncotarget. 2016:16505–16.

  83. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–84.

    Article  CAS  PubMed  Google Scholar 

  84. Nakagawa M et al. Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep. 2007;18(4):769–74.

    CAS  PubMed  Google Scholar 

  85. Oehme I et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clinical Cancer Research: an official journal of the American Association for Cancer Research. 2009;15(1):91–9.

    Article  CAS  Google Scholar 

  86. Li L et al. Deacetylation of tumor-suppressor MST1 in Hippo pathway induces its degradation through HBXIP-elevated HDAC6 in promotion of breast cancer growth. . Oncogene. 2015. doi:10.1038/onc.2015.476.

    Google Scholar 

  87. Hsieh CL, et al. Alterations in histone deacetylase 8 lead to cell migration and poor prognosis in breast cancer. Life Sciences. 2016.

  88. Marquard L et al. Histone deacetylase 1, 2, 6 and acetylated histone H4 in B- and T-cell lymphomas. Histopathology. 2009;54(6):688–98.

    Article  PubMed  Google Scholar 

  89. Adams H, Fritzsche FR, Dirnhofer S, Kristiansen G, Tzankov A. Class I histone deacetylases 1, 2 and 3 are highly expressed in classical Hodgkin’s lymphoma. Expert Opin Ther Targets. 2010;14(6):577–84.

    Article  CAS  PubMed  Google Scholar 

  90. Hrabeta J, Stiborova M, Adam V, Kizek R, & Eckschlager, T. Histone deacetylase inhibitors in cancer therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2013.

  91. Zhang J et al. microRNA-22 Downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer. 2010;103(8):1215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Varela I et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jones S et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330(6001):228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wiegand KC et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li M et al. Inactivating mutations of the chromatin remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet. 2011;43(9):828–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Biankin AV et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491(7424):399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fujimoto A et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44(7):760–4.

    Article  CAS  PubMed  Google Scholar 

  98. Hodis E et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2):251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Huang J et al. Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma. Nat Genet. 2012;44(10):1117–21.

    Article  CAS  PubMed  Google Scholar 

  100. Krauthammer M et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  103. Majem B, Rigau M, Reventos J, Wong DT. Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics. Int J Mol Sci. 2015;16(4):8676–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Gilad S et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res. 2011;717(1–2):85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mattick JS. Non-coding RNAs: the architects of eukaryotic complexity. EMBO Rep. 2001;2(11):986–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eddy SR. Non-coding RNA genes and the modern RNA world. Nat Rev Genet. 2001;2(12):919–29.

    Article  CAS  PubMed  Google Scholar 

  108. Kunej T et al. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res. 2011;717(1–2):77–84.

    Article  CAS  PubMed  Google Scholar 

  109. Dohner H et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.

    Article  CAS  PubMed  Google Scholar 

  110. Calin GA et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S AProc Natl Acad Sci U S A. 2002;99(24):15524–9.

    Article  CAS  Google Scholar 

  111. Mitchell PS et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105(30):10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Reis AH, Vargas FR, Lemos B. More epigenetic hits than meets the eye: microRNAs and genes associated with the tumorigenesis of retinoblastoma. Front Genet. 2012;3:284.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu X et al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J Exp Clin Cancer Res. 2013;32(1):96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435–9.

    Article  CAS  PubMed  Google Scholar 

  115. Tian X, Xu G. Clinical value of lncRNA MALAT1 as a prognostic marker in human cancer: systematic review and meta-analysis. BMJ open. 2015;5(9):e008653.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhu J et al. Long noncoding RNA MEG3 interacts with p53 protein and regulates partial p53 target genes in hepatoma cells. PLoS One. 2015;10(10):e0139790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Tani H, Torimura M, Akimitsu N. The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLoS One. 2013;8(1):e55684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang Y, Liu XJ, Yao XD. Function of PCA3 in prostate tissue and clinical research progress on developing a PCA3 score. Chin J Cancer Res. 2014;26(4):493–500.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Lemos.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reis, A.H.O., Vargas, F.R. & Lemos, B. Biomarkers of genome instability and cancer epigenetics. Tumor Biol. 37, 13029–13038 (2016). https://doi.org/10.1007/s13277-016-5278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5278-5

Keywords

Navigation