Skip to main content

Epigenetic Epidemiology of Cancer

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

The epigenome has been proposed as a biosensor of past or cumulative exposures and could also be a disease mediator. Human cancers exhibit a wide range of epigenetic alterations characterized by progressive acquisition during tumorigenesis and potential reversibility. Epigenetic changes may occur early in cancer development, supporting the notion that disrupted epigenetic mechanisms precede and promote malignant transformation. Recent exciting advances in epigenomics that allow the analysis of the epigenome with unprecedented resolution have galvanized investigations in epigenetic epidemiology of cancer. Epigenome states are regulated by three basic mechanisms: DNA methylation, posttranslational histone modifications, and non-coding RNAs (ncRNAs). DNA methylation is the best characterized epigenetic modification, and it is the most extensively studied in epigenetic epidemiology. Whereas it has long been established that DNA methylation (and other epigenetic) changes are ubiquitous in tumour tissue, many recent studies provided evidence that cancer risk- and exposure-associated epigenetic changes can be detected in non-malignant adjacent tissues or surrogate tissues (such as peripheral blood), providing attractive targets for discovering novel biomarkers of exposure and risk stratification. In this chapter, we review evidence from retrospective and prospective studies supporting the utility of epigenetic markers as predictors of predisposition to cancer and risk stratification. We also discuss changes in the “epigenetic clock” associated with cancer susceptibility as well as the potential of identifying epigenetic markers from negative surgical margins as predictors of cancer recurrence risk.

Competing financial interest declaration statement: The authors declare no competing financial interests. The authors further certify that their freedom to design, conduct, interpret, and publish research is not compromised by any controlling sponsor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

450k:

Illumina Infinium HumanMethylation450k BeadChip

850k:

Infinium MethylationEPIC BeadChip

AHRR :

Aryl-Hydrocarbon Receptor Repressor gene

BRCA1 :

BReast CAncer gene 1

CCGA:

Circulating Cell-free Genome Atlas

cfDNA:

cell-free DNA

CHARM:

Comprehensive high-throughput arrays for relative methylation

CpG:

Cytosine followed by a Guanine

DMR:

Differential Methylation Region

dmrff:

Method for identifying differentially methylated regions

EPIC:

The European Prospective Investigation into Cancer and Nutrition

EWAS:

Epigenome-Wide Association Studies

HNSCC:

head and neck squamous cell carcinoma

LASSO:

Least Absolute Shrinkage and Selection Operator

LINE-1:

long interspersed nuclear elements

lncRNA:

long non-coding RNA molecules

MCCS:

Melbourne Collaborative Cohort Study

MeDIP-seq:

methylated DNA immunoprecipitation sequencing

miRNAs:

microRNAs or

mRNA:

messenger RNA

ncRNAs:

non-coding RNAs

DNMT:

DNA methyltransferase

PLCO:

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial

PLS-DA:

Partial Least Squares Discriminant Analysis

RCC:

renal cell carcinoma

RLM:

Robust Linear Regression

RNAi:

RNA interference

RRBS:

reduced representation bisulphite-sequencing

seqlm:

method for identifying differentially methylated regions in high density methylation data

Ten-eleven translocation:

TET

WGBS:

whole genome bisulphite-sequencing

References

  1. Vaissiere T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659:40–48

    Article  CAS  PubMed  Google Scholar 

  2. Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17:630–641

    Article  CAS  PubMed  Google Scholar 

  3. Jones AP (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  4. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    Article  CAS  PubMed  Google Scholar 

  5. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  CAS  PubMed  Google Scholar 

  6. Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607

    Article  CAS  PubMed  Google Scholar 

  7. Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14:341–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams K, Christensen J, Helin K (2011) DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep 13:28–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vanzan L, Sklias A, Herceg Z, Murr R (2017) Mechanisms of histone modifications. In: Tollefsbol T (ed) Handbook of epigenetics: the new molecular and medical genetics, 2nd edn. Academic Press (Elsevier), pp 25–46

    Chapter  Google Scholar 

  10. Zhao Z, Shilatifard A (2019) Epigenetic modifications of histones in cancer. Genome Biol 20:245

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sawan C, Herceg Z (2011) Histone modifications and cancer. Adv Genet 70:57–85

    Article  Google Scholar 

  12. Yang X, Liu M, Li M, Zhang S, Hiju H, Sun J, Mao Z, Zheng M, Feng B (2020) Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Mol Cancer 19:64

    Article  PubMed  PubMed Central  Google Scholar 

  13. Krutovskikh VA, Herceg Z (2010) Oncogenic microRNAs (OncomiRs) as a new class of cancer biomarkers. Bioessays 32:894–904

    Article  CAS  PubMed  Google Scholar 

  14. Holoch D, Moazed D (2015) RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222

    Article  CAS  PubMed  Google Scholar 

  16. Herceg Z, Ghantous A, Wild CP, Sklias A, Casati L, Duthie SJ, Fry R, Issa JP, Kellermayer R, Koturbash I et al (2018) Roadmap for investigating epigenome deregulation and environmental origins of cancer. Int J Cancer 142:874–882

    Article  CAS  PubMed  Google Scholar 

  17. Hitchins MP (2015) Constitutional epimutation as a mechanism for cancer causality and heritability? Nat Rev Cancer 15:625–634

    Article  CAS  PubMed  Google Scholar 

  18. Van Baak TE, Coarfa C, Dugue PA, Fiorito G, Laritsky E, Baker MS, Kessler NJ, Dong J, Duryea JD, Silver MJ et al (2018) Epigenetic supersimilarity of monozygotic twin pairs. Genome Biol 19:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zeng Y, Chen T (2019) DNA methylation reprogramming during mammalian development. Genes (Basel) 10

    Google Scholar 

  20. Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19:371–384

    Article  CAS  PubMed  Google Scholar 

  21. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang Q, Vallerga CL, Walker RM, Lin T, Henders AK, Montgomery GW, He J, Fan D, Fowdar J, Kennedy M et al (2019) Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med 11:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y et al (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49:359–367

    Article  CAS  PubMed  Google Scholar 

  24. MAMMALIAN METHYLATION CONSORTIUM, Lu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, Li CZ, Zhang J, Ablaeva J, Adams DM et al (2021) Universal DNA methylation age across mammalian tissues. BioRxiv

    Google Scholar 

  25. Yu M, Hazelton WD, Luebeck GE, Grady WM (2020) Epigenetic aging: more than just a clock when it comes to cancer. Cancer Res 80:367–374

    Article  CAS  PubMed  Google Scholar 

  26. Ambatipudi S, Horvath S, Perrier F, Cuenin C, Hernandez-Vargas H, Calvez-Kelm FL, Durand G, Byrnes G, Ferrari P, Bouaoun L et al (2017) DNA methylome analysis identifies accelerated epigenetic aging associated with postmenopausal breast cancer susceptibility. Eur J Cancer 75:299–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, Calvez-Kelm FL, Kaaks R, Barrdahl M, Boeing H, Aleksandrova K, Trichopoulou A et al (2016) Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics 8:599–618

    Article  CAS  PubMed  Google Scholar 

  28. Fasanelli F, Baglietto L, Ponzi E, Guida F, Campanella G, Johansson M, Grankvist K, Johansson M, Assumma BM, Naccarati A et al (2015) Hypomethylation of smoking-related genes is associated with future lung cancer in four prospective cohorts. Nat Commun 6:10192

    Article  CAS  PubMed  Google Scholar 

  29. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, Guan W, Xu T, Elks CE, Aslibekyan S et al (2016) Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet 9:436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kresovich JK, Xu Z, O’Brien KM, Weinberg CR, Sandler DP, Taylor JA (2019) Methylation-based biological age and breast cancer risk. J Natl Cancer Inst 111:1051–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Gayther SA, Apostolidou S, Jones A, Lechner M, Beck S, Jacobs IJ, Widschwendter M (2009) An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS One 4:e8274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marsit CJ, Koestler DC, Christensen BC, Karagas MR, Houseman EA, Kelsey KT (2011) DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. J Clin Oncol 29:1133–1139

    Article  PubMed  PubMed Central  Google Scholar 

  33. Langevin SM, Koestler DC, Christensen BC, Butler RA, Wiencke JK, Nelson HH, Houseman EA, Marsit CJ, Kelsey KT (2012) Peripheral blood DNA methylation profiles are indicative of head and neck squamous cell carcinoma: an epigenome-wide association study. Epigenetics 7:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jung G, Hernandez-Illan E, Moreira L, Balaguer F, Goel A (2020) Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat Rev Gastroenterol Hepatol 17:111–130

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang R, Stocker S, Schott S, Heil J, Marme F, Cuk K, Chen B, Golatta M, Zhou Y, Sutter C et al (2017) The association between breast cancer and S100P methylation in peripheral blood by multicenter case-control studies. Carcinogenesis 38:312–320

    Article  CAS  PubMed  Google Scholar 

  36. Cappetta M, Fernandez L, Brignoni L, Artagaveytia N, Bonilla C, Lopez M, Esteller M, Bertoni B, Berdasco M (2021) Discovery of novel DNA methylation biomarkers for non-invasive sporadic breast cancer detection in the Latino population. Mol Oncol 15:473–486

    Article  CAS  PubMed  Google Scholar 

  37. Iwamoto T, Yamamoto N, Taguchi T, Tamaki Y, Noguchi S (2011) BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. Breast Cancer Res Treat 129:69–77

    Article  CAS  PubMed  Google Scholar 

  38. Al-Moghrabi N, Nofel A, Al-Yousef N, Madkhali S, Bin Amer SM, Alaiya A, Shinwari Z, Al-Tweigeri T, Karakas B, Tulbah A, Aboussekhra A (2014) The molecular significance of methylated BRCA1 promoter in white blood cells of cancer-free females. BMC Cancer 14:830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong EM, Southey MC, Fox SB, Brown MA, Dowty JG, Jenkins MA, Giles GG, Hopper JL, Dobrovic A (2011) Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev Res (Phila) 4:23–33

    Article  CAS  Google Scholar 

  40. Shen SY, Singhania R, Fehringer G, Chakravarthy A, Roehrl MHA, Chadwick D, Zuzarte PC, Borgida A, Wang TT, Li T et al (2018) Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563:579–583

    Article  CAS  PubMed  Google Scholar 

  41. Nassiri F, Chakravarthy A, Feng S, Shen SY, Nejad R, Zuccato JA, Voisin MR, Patil V, Horbinski C, Aldape K et al (2020) Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat Med 26:1044–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nuzzo PV, Berchuck JE, Korthauer K, Spisak S, Nassar AH, Abou Alaiwi S, Chakravarthy A, Shen SY, Bakouny Z, Boccardo F et al (2020) Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat Med 26:1041–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang S, Li Q, Chen Q, Zhou Y, Park S, Lee G, Grimes B, Krysan K, Yu M, Wang W et al (2017) CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA. Genome Biol 18:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu MC, Oxnard GR, Klein EA, Swanton C, Seiden MV, Consortium C (2020) Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann Oncol 31:745–759

    Article  CAS  PubMed  Google Scholar 

  45. Song L, Jia J, Peng X, Xiao W, Li Y (2017) The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: a meta-analysis. Sci Rep 7:3032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Church TR, Wandell M, Lofton-Day C, Mongin SJ, Burger M, Payne SR, Castanos-Velez E, Blumenstein BA, Rosch T, Osborn N et al (2014) Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63:317–325

    Article  CAS  PubMed  Google Scholar 

  47. Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A, Swerdlow A, Thorne H, Investigators KC, Riboli E et al (2012) Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 72:2304–2313

    Article  CAS  PubMed  Google Scholar 

  48. Deroo LA, Bolick SC, Xu Z, Umbach DM, Shore D, Weinberg CR, Sandler DP, Taylor JA (2014) Global DNA methylation and one-carbon metabolism gene polymorphisms and the risk of breast cancer in the Sister Study. Carcinogenesis 35:333–338

    Article  CAS  PubMed  Google Scholar 

  49. Severi G, Southey MC, English DR, Jung CH, Lonie A, McLean C, Tsimiklis H, Hopper JL, Giles GG, Baglietto L (2014) Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer. Breast Cancer Res Treat 148:665–673

    Article  CAS  PubMed  Google Scholar 

  50. van Veldhoven K, Polidoro S, Baglietto L, Severi G, Sacerdote C, Panico S, Mattiello A, Palli D, Masala G, Krogh V et al (2015) Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin Epigenetics 7:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA (2013) Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst 105(10):694–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu Z, Sandler DP, Taylor JA (2020) Blood DNA methylation and breast cancer: a prospective case-cohort analysis in the Sister Study. J Natl Cancer Inst 112:87–94

    Article  CAS  PubMed  Google Scholar 

  53. Bodelon C, Ambatipudi S, Dugue PA, Johansson A, Sampson JN, Hicks B, Karlins E, Hutchinson A, Cuenin C, Chajes V et al (2019) Blood DNA methylation and breast cancer risk: a meta-analysis of four prospective cohort studies. Breast Cancer Res 21:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chamberlain JA, Dugue PA, Bassett JK, Milne RL, Joo JE, Wong EM, Brinkman MT, Stuart GW, Boussioutas A, Southey MC et al (2021) DNA methylation in peripheral blood and risk of gastric cancer: a prospective nested case-control study. Cancer Prev Res (Phila) 14:233–240

    Article  CAS  Google Scholar 

  55. Houseman EA, Kelsey KT, Wiencke JK, Marsit CJ (2015) Cell-composition effects in the analysis of DNA methylation array data: a mathematical perspective. BMC Bioinform 16:95

    Article  CAS  Google Scholar 

  56. Lin LH, Chang KW, Kao SY, Cheng HW, Liu CJ (2018) Increased plasma circulating cell-free DNA could be a potential marker for oral cancer. Int J Mol Sci 19

    Google Scholar 

  57. Valpione S, Gremel G, Mundra P, Middlehurst P, Galvani E, Girotti MR, Lee RJ, Garner G, Dhomen N, Lorigan PC, Marais R (2018) Plasma total cell-free DNA (cfDNA) is a surrogate biomarker for tumour burden and a prognostic biomarker for survival in metastatic melanoma patients. Eur J Cancer 88:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan L, Chen Y, Zhou J, Zhao H, Zhang H, Wang G (2018) Diagnostic value of circulating cell-free DNA levels for hepatocellular carcinoma. Int J Infect Dis 67:92–97

    Article  CAS  PubMed  Google Scholar 

  59. Carmona JJ, Accomando WP Jr, Binder AM, Hutchinson JN, Pantano L, Izzi B, Just AC, Lin X, Schwartz J, Vokonas PS et al (2017) Empirical comparison of reduced representation bisulfite sequencing and Infinium BeadChip reproducibility and coverage of DNA methylation in humans. NPJ Genom Med 2:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sawabata N, Maeda H, Matsumura A, Ohta M, Okumura M (2012) Clinical implications of the margin cytology findings and margin/tumor size ratio in patients who underwent pulmonary excision for peripheral non-small cell lung cancer. Surg Today 42:238–244

    Article  PubMed  Google Scholar 

  61. Leemans CR, Tiwari R, Nauta JJ, van der Waal I, Snow GB (1994) Recurrence at the primary site in head and neck cancer and the significance of neck lymph node metastases as a prognostic factor. Cancer 73:187–190

    Article  CAS  PubMed  Google Scholar 

  62. Lee JY, Cho KB, Kim ES, Park KS, Lee YJ, Lee YS, Jang BK, Chung WJ, Hwang JS (2016) Risk factors for local recurrence after en bloc endoscopic submucosal dissection for early gastric cancer. World J Gastrointest Endosc 8:330–337

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hinerman RW, Mendenhall WM, Morris CG, Amdur RJ, Werning JW, Villaret DB (2004) Postoperative irradiation for squamous cell carcinoma of the oral cavity: 35-year experience. Head Neck 26:984–994

    Article  PubMed  Google Scholar 

  64. Romeo S, Dei Tos AP, Hogendoorn PCW (2012) The clinical impact of molecular techniques on diagnostic pathology of soft tissue and bone tumours. Diagn Histopathol 18:81–85

    Article  Google Scholar 

  65. Caygill CP, Gatenby PA, Herceg Z, Lima SC, Pinto LF, Watson A, Wu MS (2014) Comparative genomic analysis of esophageal cancers. Ann N Y Acad Sci 1325:69–76

    Article  PubMed  Google Scholar 

  66. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6:963–968

    Article  CAS  PubMed  Google Scholar 

  67. Hayashi M, Wu G, Roh JL, Chang X, Li X, Ahn J, Goldsmith M, Khan Z, Bishop J, Zhang Z et al (2015) Correlation of gene methylation in surgical margin imprints with locoregional recurrence in head and neck squamous cell carcinoma. Cancer 121:1957–1965

    Article  CAS  PubMed  Google Scholar 

  68. Brennan JA, Mao L, Hruban RH, Boyle JO, Eby YJ, Koch WM, Goodman SN, Sidransky D (1995) Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N Engl J Med 332:429–435

    Article  CAS  PubMed  Google Scholar 

  69. van Houten VM, Leemans CR, Kummer JA, Dijkstra J, Kuik DJ, van den Brekel MW, Snow GB, Brakenhoff RH (2004) Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients: a prospective study. Clin Cancer Res 10:3614–3620

    Article  PubMed  Google Scholar 

  70. Partridge M, Li SR, Pateromichelakis S, Francis R, Phillips E, Huang XH, Tesfa-Selase F, Langdon JD (2000) Detection of minimal residual cancer to investigate why oral tumors recur despite seemingly adequate treatment. Clin Cancer Res 6:2718–2725

    CAS  PubMed  Google Scholar 

  71. Clark DJ, Mao L (2017) Understanding the surgical margin: a molecular assessment. Oral Maxillofac Surg Clin North Am 29:245–258

    Article  PubMed  Google Scholar 

  72. Braakhuis BJ, Bloemena E, Leemans CR, Brakenhoff RH (2010) Molecular analysis of surgical margins in head and neck cancer: more than a marginal issue. Oral Oncol 46:485–491

    Article  CAS  PubMed  Google Scholar 

  73. Goldenberg D, Harden S, Masayesva BG, Ha P, Benoit N, Westra WH, Koch WM, Sidransky D, Califano JA (2004) Intraoperative molecular margin analysis in head and neck cancer. Arch Otolaryngol Head Neck Surg 130:39–44

    Article  PubMed  Google Scholar 

  74. Supic G, Kozomara R, Jovic N, Zeljic K, Magic Z (2011) Prognostic significance of tumor-related genes hypermethylation detected in cancer-free surgical margins of oral squamous cell carcinomas. Oral Oncol 47:702–708

    Article  CAS  PubMed  Google Scholar 

  75. Sunagawa Y, Hayashi M, Yamada S, Tanabe H, Kurimoto K, Tanaka N, Sonohara F, Inokawa Y, Takami H, Kanda M et al (2021) Impact of molecular surgical margin analysis on the prediction of pancreatic cancer recurrences after pancreaticoduodenectomy. Clin Epigenetics 13:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tan H, Saulnier P, AupÈrin A, Lacroix L, Casiraghi O, Janot F, Fouret P, Temam S (2008) Quantitative methylation analyses of resection margins predict local recurrences and disease-specific deaths in patients with head and neck squamous cell carcinomas. Br J Cancer 99:357–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sorroche BP, Talukdar FR, Lima SCS, Melendez ME, de Carvalho AC, de Almeida GC, De Marchi P, Lopes M, Ribeiro Pinto LF, Carvalho AL et al (2021) DNA methylation markers from negative surgical margins can predict recurrence of oral squamous cell carcinoma. Cancers (Basel) 13

    Google Scholar 

  78. Ghantous A, Hernandez-Vargas H, Byrnes G, Dwyer T, Herceg Z (2015) Characterising the epigenome as a key component of the fetal exposome in evaluating in utero exposures and childhood cancer risk. Mutagenesis 30:733–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, Sroczynski G, Hall P, Cuzick J, Evans DG et al (2020) Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol

    Google Scholar 

Download references

Acknowledgment

The work in the Epigenomics and Mechanisms Branch (EGM) at IARC is supported by grants from the Institut National du Cancer (INCa, France), the European Commission (EC) Seventh Framework Programme (FP7) Translational Cancer Research (TRANSCAN) Framework, the Foundation ARC pour la Recherche sur le Cancer (France), and Plan Cancer-Eva-Inserm research grant to Z.H. FC was supported by a Postdoctoral Fellowship from the International Agency for Research on Cancer, partially supported by the EC FP7 Marie Curie Actions—People—Co-funding of regional, national, and international programmes (COFUND).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zdenko Herceg or Felicia Fei-Lei Chung .

Editor information

Editors and Affiliations

Additional information

Disclaimer: Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy, or views of the International Agency for Research on Cancer/World Health Organization.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herceg, Z., Ghantous, A., Chung, F.FL. (2022). Epigenetic Epidemiology of Cancer. In: Michels, K.B. (eds) Epigenetic Epidemiology. Springer, Cham. https://doi.org/10.1007/978-3-030-94475-9_13

Download citation

Publish with us

Policies and ethics