Skip to main content

Advertisement

Log in

Rap2B GTPase: structure, functions, and regulation

  • Review
  • Published:
Tumor Biology

Abstract

Rap2B GTPase, a member of Ras-related protein superfamily, was first discovered from a platelet cDNA library in the early 1990s. Since then, it has been reported to play an important role in regulating cellular processes including cytoskeletal organization, cell growth, and proliferation. It can be stimulated and suppressed by a wide range of external and internal inducers, circulating between GTP-bound active state and GDP-bound inactive state. Increasing focus on Ras signaling pathway reveals critical effects of Rap2B on tumorigenesis. In particular, Rap2B behaves in a p53-dependent manner in regulation of apoptosis and migration. Apart from being an oncogenic activator, Rap2B has been found to participate in many other physiological events via diverse downstream effectors. In this review, we present recent studies on the structure, regulation, and multiple biological functions of Rap2B, shedding light on its potential status in treatment of cancer as well as other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bos JL. Linking Rap to cell adhesion. Curr Opin Cell Biol. 2005;17:123–8.

    Article  CAS  PubMed  Google Scholar 

  2. Wittchen ES, van Buul JD, Burridge K, Worthylake RA. Trading spaces: Rap, Rac, and Rho as architects of transendothelial migration. Curr Opin Hematol. 2005;12:14–21.

    Article  CAS  PubMed  Google Scholar 

  3. Sayyah J, Bartakova A, Nogal N, Quilliam LA, Stupack DG, Brown JH. The Ras-related protein, Rap1A, mediates thrombin-stimulated, integrin-dependent glioblastoma cell proliferation and tumor growth. J Biol Chem. 2014;289:17689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nancy V, Wolthuis RM, de Tand MF, Janoueix-Lerosey I, Bos JL, de Gunzburg J. Identification and characterization of potential effector molecules of the Ras-related GTPase Rap2. J Biol Chem. 1999;274:8737–45.

    Article  CAS  PubMed  Google Scholar 

  5. Huang H, Di J, Qu D, Gao Z, Zhang Y, Zheng J. Role of Rap2 and its downstream effectors in tumorigenesis. Anticancer Agents Med Chem. 2015;15:1269–76.

    Article  CAS  PubMed  Google Scholar 

  6. Bigler D, Gioeli D, Conaway MR, Weber MJ, Theodorescu D. Rap2 regulates androgen sensitivity in human prostate cancer cells. Prostate. 2007;67:1590–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bos JL. All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral. EMBO J. 1998;17:6776–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paganini S, Guidetti GF, Catricala S, Trionfini P, Panelli S, Balduini C, et al. Identification and biochemical characterization of Rap2C, a new member of the Rap family of small GTP-binding proteins. Biochimie. 2006;88:285–95.

    Article  CAS  PubMed  Google Scholar 

  9. Pizon V, Chardin P, Lerosey I, Olofsson B, Tavitian A. Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the ‘effector’ region. Oncogene. 1988;3:201–4.

    CAS  PubMed  Google Scholar 

  10. Farrell FX, Ohmstede CA, Reep BR, Lapetina EG. cDNA sequence of a new ras-related gene (rap2b) isolated from human platelets with sequence homology to rap2. Nucleic Acids Res. 1990;18:4281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu JX, Zhang DG, Zheng JN, Pei DS. Rap2a is a novel target gene of p53 and regulates cancer cell migration and invasion. Cell Signal. 2015;27:1198–207.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang X, He Y, Lee KH, Dubois W, Li Z, Wu X, et al. Rap2b, a novel p53 target, regulates p53-mediated pro-survival function. Cell Cycle. 2013;12:1279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang J, Di J, Cao H, Bai J, Zheng J. p53-mediated autophagic regulation: a prospective strategy for cancer therapy. Cancer Lett. 2015;363:101–7.

    Article  CAS  PubMed  Google Scholar 

  14. Prabakaran I, Grau JR, Lewis R, Fraker DL, Guvakova MA. Rap2A is upregulated in invasive cells dissected from follicular thyroid cancer. J Thyroid Res. 2011;2011:979840.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, et al. Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer. 2007;56:307–17.

    Article  PubMed  Google Scholar 

  16. Di JH, Qu DB, Lu Z, Li LT, Cheng Q, Xin Y, et al. Rap2B promotes migration and invasion of human suprarenal epithelioma. Tumour Biol. 2014;35:9387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Farrell FX, Yamamoto K, Lapetina EG. Prenyl group identification of rap2 proteins: a ras superfamily member other than ras that is farnesylated. Biochem J. 1993;289:349–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Canobbio I, Trionfini P, Guidetti GF, Balduini C, Torti M. Targeting of the small GTPase Rap2b, but not Rap1b, to lipid rafts is promoted by palmitoylation at Cys176 and Cys177 and is required for efficient protein activation in human platelets. Cell Signal. 2008;20:1662–70.

    Article  CAS  PubMed  Google Scholar 

  19. Maridonneau-Parini I, de Gunzburg J. Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J Biol Chem. 1992;267:6396–402.

    CAS  PubMed  Google Scholar 

  20. Zhang Q, Chen J, Wu W, Yuan J, Cheng S, Wu Y. Expression of RAP2B in human lung cancer. Carcinogenesis Teratogenesis Mutagenesis. 2007;19:466–8.

    CAS  Google Scholar 

  21. Di J, Huang H, Qu D, Tang J, Cao W, Lu Z, et al. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway. Sci Rep. 2015;5:12363.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fu G, Liu Y, Yuan J, Zheng H, Shi T, Lei W, et al. Identification and functional analysis of a novel candidate oncogene RAP2B in lung cancer. Zhongguo Fei Ai Za Zhi. 2009;12:273–6.

    CAS  PubMed  Google Scholar 

  23. Azuara D, Rodriguez-Moranta F, de Oca J, Soriano-Izquierdo A, Mora J, Guardiola J, et al. Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin Colorectal Cancer. 2010;9:168–76.

    Article  CAS  PubMed  Google Scholar 

  24. Mah WC, Lee CG. DNA methylation: potential biomarker in hepatocellular carcinoma. Biomark Res. 2014;2:5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tahara T, Arisawa T. DNA methylation as a molecular biomarker in gastric cancer. Epigenomics. 2015;7:475–86.

    Article  CAS  PubMed  Google Scholar 

  26. Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T, Walter J. CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet. 2006;2:e26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Liu F, Killian JK, Yang M, Walker RL, Hong JA, Zhang M, et al. Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene. 2010;29:3650–64.

    Article  CAS  PubMed  Google Scholar 

  28. Li Y, Liang J, Hou P. Hypermethylation in gastric cancer. Clin Chim Acta. 2015;448:124–32.

    Article  CAS  PubMed  Google Scholar 

  29. Daura-Oller E, Cabre M, Montero MA, Paternain JL, Romeu A. Specific gene hypomethylation and cancer: new insights into coding region feature trends. Bioinformation. 2009;3:340–3.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang S, Zhou M, Jiang G, Gong C, Cui D, Luo L, et al. Expression and DNA methylation status of the Rap2b gene in human bronchial epithelial cells treated by cigarette smoke condensate. Inhal Toxicol. 2015;27:502–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bodak M, Yu J, Ciaudo C. Regulation of line-1 in mammals. Biomol Concepts. 2014;5:409–28.

    Article  CAS  PubMed  Google Scholar 

  32. Mollinedo F, Perez-Sala D, Gajate C, Jimenez B, Rodriguez P, Lacal JC. Localization of rap1 and rap2 proteins in the gelatinase-containing granules of human neutrophils. FEBS Lett. 1993;326:209–14.

    Article  CAS  PubMed  Google Scholar 

  33. Greco F, Ciana A, Pietra D, Balduini C, Minetti G, Torti M. Rap2, but not Rap1 GTPase is expressed in human red blood cells and is involved in vesiculation. Biochim Biophys Acta. 2006;1763:330–5.

    Article  CAS  PubMed  Google Scholar 

  34. Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Glycoprotein IIb-IIIa and the translocation of Rap2B to the platelet cytoskeleton. Proc Natl Acad Sci U S A. 1994;91:4239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lippi G, Montagnana M, Danese E, Favaloro EJ, Franchini M. Glycoprotein IIb/IIIa inhibitors: an update on the mechanism of action and use of functional testing methods to assess antiplatelet efficacy. Biomark Med. 2011;5:63–70.

    Article  CAS  PubMed  Google Scholar 

  36. Torti M, Bertoni A, Canobbio I, Sinigaglia F, Lapetina EG, Balduini C. Rap1b and Rap2b translocation to the cytoskeleton by von Willebrand factor involves Fcγii receptor-mediated protein tyrosine phosphorylation. J Biol Chem. 1999;274:13690–7.

    Article  CAS  PubMed  Google Scholar 

  37. Li R, Emsley J. The organizing principle of the platelet glycoprotein Ib-IX-V complex. J Thromb Haemost. 2013;11:605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Selvaraj P, Fifadara N, Nagarajan S, Cimino A, Wang G. Functional regulation of human neutrophil Fc gamma receptors. Immunol Res. 2004;29:219–30.

    Article  CAS  PubMed  Google Scholar 

  39. Campa MJ, Farrell FX, Lapetina EG, Chang KJ. Microinjection of Rap2b protein or RNA induces rearrangement of pigment granules in Xenopus oocytes. Biochem J. 1993;292(Pt 1):231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi SC, Han JK. Rap2 is required for Wnt/beta-catenin signaling pathway in Xenopus early development. EMBO J. 2005;24:985–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De Ferrari GV, Avila ME, Medina MA, Perez-Palma E, Bustos BI, Alarcon MA. Wnt/β-catenin signaling in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2014;13:745–54.

    Article  PubMed  CAS  Google Scholar 

  42. He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development. 2004;131:1663–77.

    Article  CAS  PubMed  Google Scholar 

  43. Veeman MT, Axelrod JD, Moon RT. A second canon, functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5:367–77.

    Article  CAS  PubMed  Google Scholar 

  44. Sugimura R, Li L. Noncanonical Wnt signaling in vertebrate development, stem cells, and diseases. Birth Defects Res C Embryo Today. 2010;90:243–56.

    Article  CAS  PubMed  Google Scholar 

  45. Marsden M, DeSimone DW. Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin. Development. 2001;128:3635–47.

    CAS  PubMed  Google Scholar 

  46. McLeod SJ, Shum AJ, Lee RL, Takei F, Gold MR. The Rap GTPases regulate integrin-mediated adhesion, cell spreading, actin polymerization, and Pyk2 tyrosine phosphorylation in B lymphocytes. J Biol Chem. 2004;279:12009–19.

    Article  CAS  PubMed  Google Scholar 

  47. Bruurs LJ, Bos JL. Mechanisms of isoform specific Rap2 signaling during enterocytic brush border formation. PLoS One. 2014;9:e106687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Mestre MB, Colombo MI. cAMP and EPAC are key players in the regulation of the signal transduction pathway involved in the alpha-hemolysin autophagic response. PLoS Pathog. 2012;8:e1002664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mestre MB, Colombo MI. Staphylococcus aureus promotes autophagy by decreasing intracellular cAMP levels. Autophagy. 2012;8:1865–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roscioni SS, Elzinga CR, Schmidt M. Epac: effectors and biological functions. Naunyn Schmiedebergs Arch Pharmacol. 2008;377:345–57.

    Article  CAS  PubMed  Google Scholar 

  51. Chalmeau J, Monina N, Shin J, Vieu C, Noireaux V. Alpha-hemolysin pore formation into a supported phospholipid bilayer using cell-free expression. Biochim Biophys Acta. 1808;2011:271–8.

    Google Scholar 

  52. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41.

    Article  CAS  PubMed  Google Scholar 

  53. Kobayashi S. Choose delicately and reuse adequately: the newly revealed process of autophagy. Biol Pharm Bull. 2015;38:1098–103.

    Article  CAS  PubMed  Google Scholar 

  54. Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012;11:709–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol. 2012;13:7–12.

    CAS  Google Scholar 

  56. Munson MJ, Allen GF, Toth R, Campbell DG, Lucocq JM, Ganley IG. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J. 2015;34:2272–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mestre MB, Fader CM, Sola C, Colombo MI. Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells. Autophagy. 2010;6:110–25.

    Article  CAS  PubMed  Google Scholar 

  58. Xia HG, Zhang L, Chen G, Zhang T, Liu J, Jin M, et al. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy. 2010;6:61–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. Biochim Biophys Acta. 2009;1793:1465–77.

    Article  CAS  PubMed  Google Scholar 

  60. Torti M, Ramaschi G, Sinigaglia F, Lapetina EG, Balduini C. Association of the low molecular weight GTP-binding protein rap2B with the cytoskeleton during platelet aggregation. Proc Natl Acad Sci U S A. 1993;90:7553–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Di J, Huang H, Wang Y, Qu D, Tang J, Cheng Q, et al. p53 target gene Rap2B regulates the cytoskeleton and inhibits cell spreading. J Cancer Res Clin Oncol. 2015;141:1791–8.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang Q, Duan L, Xu H, Yuan J, Wu W, Wu Y, et al. Effects of Rap2b gene on foci formation and wound-healing of NIH3T3 cells. Wei Sheng Yan Jiu. 2010;39:403–6.

    CAS  PubMed  Google Scholar 

  63. Itahana K, Mao H, Jin A, Itahana Y, Clegg HV, Lindstrom MS, et al. Targeted inactivation of Mdm2 ring finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell. 2007;12:355–66.

    Article  CAS  PubMed  Google Scholar 

  64. Di J, Zhang Y, Zheng J. Reactivation of p53 by inhibiting Mdm2 E3 ligase: a novel antitumor approach. Curr Cancer Drug Targets. 2011;11:987–94.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Q, Xing R, Xu H, Yuan J, Li C, Wu W, et al. Construction of eukaryotic expression vector of rap2b and its effects on pathway of nih3t3 cells. Cancer Res Prevention Treat. 2010;37:640–3.

    CAS  Google Scholar 

  66. Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell. 2002;110:443–55.

    Article  CAS  PubMed  Google Scholar 

  67. Ryu J, Futai K, Feliu M, Weinberg R, Sheng M. Constitutively active Rap2 transgenic mice display fewer dendritic spines, reduced extracellular signal-regulated kinase signaling, enhanced long-term depression, and impaired spatial learning and fear extinction. J Neurosci. 2008;28:8178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu Y, Pak D, Qin Y, McCormack SG, Kim MJ, Baumgart JP, et al. Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron. 2005;46:905–16.

    Article  CAS  PubMed  Google Scholar 

  69. Fu Z, Lee SH, Simonetta A, Hansen J, Sheng M, Pak DT. Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. J Neurochem. 2007;100:118–31.

    Article  CAS  PubMed  Google Scholar 

  70. Miertzschke M, Stanley P, Bunney TD, Rodrigues-Lima F, Hogg N, Katan M. Characterization of interactions of adapter protein RAPL/Nore1B with RAP GTPases and their role in T cell migration. J Biol Chem. 2007;282:30629–42.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Y, Moschetta M, Huynh D, Tai YT, Zhang Y, Zhang W, et al. Pyk2 promotes tumor progression in multiple myeloma. Blood. 2014;124:2675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guidetti GF, Torti M. The small GTPase Rap1b: a bidirectional regulator of platelet adhesion receptors. J Signal Transduct. 2012;2012:412089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Ohba Y, Mochizuki N, Matsuo K, Yamashita S, Nakaya M, Hashimoto Y, et al. Rap2 as a slowly responding molecular switch in the Rap1 signaling cascade. Mol Cell Biol. 2000;20:6074–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pak DT, Yang S, Rudolph-Correia S, Kim E, Sheng M. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron. 2001;31:289–303.

    Article  CAS  PubMed  Google Scholar 

  75. Singh L, Gao Q, Kumar A, Gotoh T, Wazer DE, Band H, et al. The high-risk human papillomavirus type 16 E6 counters the GAP function of E6TP1 toward small Rap G proteins. J Virol. 2003;77:1614–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Minato N, Hattori M. Spa-1 (Sipa1) and Rap signaling in leukemia and cancer metastasis. Cancer Sci. 2009;100:17–23.

    Article  CAS  PubMed  Google Scholar 

  77. Christian JL, Olson DJ, Moon RT. Xwnt-8 modifies the character of mesoderm induced by bFGF in isolated Xenopus ectoderm. EMBO J. 1992;11:33–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Baker JC, Beddington RS, Harland RM. Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev. 1999;13:3149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wessely O, Agius E, Oelgeschlager M, Pera EM, De Robertis EM. Neural induction in the absence of mesoderm: beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev Biol. 2001;234:161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guillen-Ahlers H. Wnt signaling in renal cancer. Curr Drug Targets. 2008;9:591–600.

    Article  CAS  PubMed  Google Scholar 

  81. Gloerich M, ten Klooster JP, Vliem MJ, Koorman T, Zwartkruis FJ, Clevers H, et al. Rap2A links intestinal cell polarity to brush border formation. Nat Cell Biol. 2012;14:793–801.

    Article  CAS  PubMed  Google Scholar 

  82. Greco F, Sinigaglia F, Balduini C, Torti M. Activation of the small GTPase Rap2B in agonist-stimulated human platelets. J Thromb Haemost. 2004;2:2223–30.

    Article  CAS  PubMed  Google Scholar 

  83. Woulfe D, Jiang H, Mortensen R, Yang J, Brass LF. Activation of Rap1B by G(i) family members in platelets. J Biol Chem. 2002;277:23382–90.

    Article  CAS  PubMed  Google Scholar 

  84. Marti KB, Lapetina EG. Epinephrine suppresses rap1B.GAP-activated GTPase activity in human platelets. Proc Natl Acad Sci U S A. 1992;89:2784–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Torti M, Lapetina EG. Structure and function of rap proteins in human platelets. Thromb Haemost. 1994;71:533–43.

    CAS  PubMed  Google Scholar 

  86. Keiper M, Stope MB, Szatkowski D, Bohm A, Tysack K, Vom Dorp F, et al. Epac- and Ca2+ -controlled activation of Ras and extracellular signal-regulated kinases by Gs-coupled receptors. J Biol Chem. 2004;279:46497–508.

    Article  CAS  PubMed  Google Scholar 

  87. Lova P, Paganini S, Hirsch E, Barberis L, Wymann M, Sinigaglia F, et al. A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gi-dependent activation of platelet Rap1B. J Biol Chem. 2003;278:131–8.

    Article  CAS  PubMed  Google Scholar 

  88. Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, et al. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem. 2001;276:2752–7.

    Article  CAS  PubMed  Google Scholar 

  89. Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, et al. A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase. Nat Cell Biol. 2001;3:1020–4.

    Article  CAS  PubMed  Google Scholar 

  90. Evellin S, Nolte J, Tysack K, vom Dorp F, Thiel M, Weernink PA, et al. Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B. J Biol Chem. 2002;277:16805–13.

    Article  CAS  PubMed  Google Scholar 

  91. Stope MB, Vom Dorp F, Szatkowski D, Bohm A, Keiper M, Nolte J, et al. Rap2B-dependent stimulation of phospholipase C-epsilon by epidermal growth factor receptor mediated by c-Src phosphorylation of RasGRP3. Mol Cell Biol. 2004;24:4664–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278:16–27.

    Article  CAS  PubMed  Google Scholar 

  93. Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010;15:117–34.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jung CH, Kim EM, Park JK, Hwang SG, Moon SK, Kim WJ, et al. Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol Rep. 2013;29:2109–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu CY, Lai SC. Induction of matrix metalloproteinase-2 and -9 via Erk1/2-NF-kappaB pathway in human astroglia infected with Toxoplasma gondii. Acta Trop. 2013;127:14–20.

    Article  CAS  PubMed  Google Scholar 

  96. Bae IH, Park MJ, Yoon SH, Kang SW, Lee SS, Choi KM, et al. Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res. 2006;66:4991–5.

    Article  CAS  PubMed  Google Scholar 

  97. Taira K, Umikawa M, Takei K, Myagmar BE, Shinzato M, Machida N, et al. The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J Biol Chem. 2004;279:49488–96.

    Article  CAS  PubMed  Google Scholar 

  98. Machida N, Umikawa M, Takei K, Sakima N, Myagmar BE, Taira K, et al. Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. J Biol Chem. 2004;279:15711–4.

    Article  CAS  PubMed  Google Scholar 

  99. Myagmar BE, Umikawa M, Asato T, Taira K, Oshiro M, Hino A, et al. PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector. Biochem Biophys Res Commun. 2005;329:1046–52.

    Article  CAS  PubMed  Google Scholar 

  100. Xie X, Liu H, Wang M, Ding F, Xiao H, Hu F, et al. miR-342-3p targets RAP2B to suppress proliferation and invasion of non-small cell lung cancer cells. Tumour Biol. 2015;36:5031–8.

    Article  CAS  PubMed  Google Scholar 

  101. Novak K. Epigenetics changes in cancer cells. MedGenMed. 2004;6:17.

    PubMed  PubMed Central  Google Scholar 

  102. Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics. 2015;7:127.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8:1398–406.

    Article  CAS  PubMed  Google Scholar 

  104. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003;63:2658–64.

    CAS  PubMed  Google Scholar 

  105. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.

    Article  CAS  PubMed  Google Scholar 

  106. Anastas JN, Moon RT. Wnt signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13:11–26.

    Article  CAS  PubMed  Google Scholar 

  107. Iacobuzio-Donahue CA, Herman JM. Autophagy, p53, and pancreatic cancer. N Engl J Med. 2014;370:1352–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (nos. 81201637) and Natural Science Foundation for colleges and universities in Jiangsu Province (no. 14KJB320023). Jiehui Di was sponsored by the Qing Lan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junnian Zheng.

Ethics declarations

Conflicts of interest

None

Additional information

Zhesi Zhu and Jiehui Di contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Di, J., Lu, Z. et al. Rap2B GTPase: structure, functions, and regulation. Tumor Biol. 37, 7085–7093 (2016). https://doi.org/10.1007/s13277-016-5033-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5033-y

Keywords

Navigation