Skip to main content

Advertisement

Log in

Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Stem cell factor (SCF) plays an important role in tumor growth and metastasis. However, the function of SCF in regulating stemness and migration of cancer stem cells (CSCs) remains largely undefined. Here, we report that non-adhesive culture system can enrich and expand CSCs derived from Lewis lung carcinoma (LLC) cells and that the expression level of SCF in CSCs was higher than those in LLC cells. Silencing SCF via short hairpin (sh) RNA lentivirus transduction attenuated sphere formation and inhibited expressions of stemness genes, ALDH1, Sox2, and Oct4 of CSCs in vitro and in vivo. Moreover, SCF-silenced CSCs inhibited the migration and epithelial-mesenchymal transition, with decreased expression of N-cadherin, Vimentin, and increased expression of E-cadherin in vitro and in vivo. Finally, SCF-short hairpin RNA (shRNA) lentivirus transduction suppressed tumorigenicity of CSCs. Taken together, our findings unraveled an important role of SCF in CSCs derived from LLC cells. SCF might serve as a novel target for lung cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

SCF:

Stem cell factor

EMT:

Epithelial-mesenchymal transformation

CSCs:

Cancer stem cells

LLC:

Lewis lung carcinoma

SFE:

Sphere formation efficiency

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29.

    Article  PubMed  Google Scholar 

  2. Lundin A, Driscoll B. Lung cancer stem cells: progress and prospects. Cancer Lett. 2013;338:89–93.

    Article  CAS  PubMed  Google Scholar 

  3. Flaherty JD O, Barr M, Fennell D. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol. 2012;7:1880–90.

    Article  CAS  Google Scholar 

  4. Wang L, Guo H, Lin C, et al. Enrichment and characterization of cancer stem like cells from a cervical cancer cell line. Mol Med Rep. 2014;9:2117–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang L, Guo H, Yang L, et al. Morusin inhibits human cervical cancer stem cell growth and migration through attenuation of NF-kB activity and apoptosis induction. Mol Cell Biochem. 2013;379:7–18.

    Article  CAS  PubMed  Google Scholar 

  6. Martin FH, Suggs SV, Langley KE, et al. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell. 1990;63:203–11.

    Article  CAS  PubMed  Google Scholar 

  7. Zsebo KM, Williams DA, Geissler EN, et al. Stem cell factor is encoded at the SI locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990;63:213–24.

    Article  CAS  PubMed  Google Scholar 

  8. Lennartsson J, Ronnstrand L. Stem cell factor receptor/c-kit: from basic science to clinical implications. Physiol Rev. 2012;92:1619–49.

    Article  CAS  PubMed  Google Scholar 

  9. Broudy VC. Stem cell factor and hematopoiesis. Blood. 1997;90:1345–64.

    CAS  PubMed  Google Scholar 

  10. Sette C, Dolci S, Geremia R, Rossi P. The role of stem cell factor and of alternative c-kit gene products in the establishment, maintenance and function of grem cells. Int J Dev Biol. 2000;44:599–608.

    CAS  PubMed  Google Scholar 

  11. Yoshida H, Kunisada T, Grimm T, et al. Review: melanocyte migration and survival controlled by SCF/c-kit expression. J Investig Dermatol Symp Proc. 2001;6:1–5.

    Article  CAS  PubMed  Google Scholar 

  12. Kindler T, Breitenbuecher F, Marx A, et al. Efficacy and safety of imatinib in adult patients with c-kit-positive acute myeloid leukemia. Blood. 2004;103:3644–54.

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Ren H, Zhao T, et al. Stem cell factor is a novel independent prognostic biomarker for hepatocellular carcinoma after curative resection. Carcinogenesis. 2014;35:2283–90.

    Article  CAS  PubMed  Google Scholar 

  14. Chiron D, Maiqa S, Surget S, et al. Autocrine insulin-like growth factor 1 and stem cell factor but not interleukin 6 support self-renewal of human myeloma cells. Blood Cancer J. 2013;3:e120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Catalano A, Rodilossi S, Rippo MR, et al. Induction of stem cell factor/c-Kit/slug signal transduction in multidrug-resistant malignant mesothelioma cells. J Biol Chem. 2004;279:46706–14.

    Article  CAS  PubMed  Google Scholar 

  16. Chen SF, Chang YC, Nieh S, et al. Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PLoS One. 2012;7:e31864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang YC, Yang ZM, Chen XH, et al. Isolation of mesenchymal stem cells from human placental decidua basalis and resistance to hypoxia and serum deprivation. Stem Cell Rev. 2009;5:247–55.

    Article  CAS  PubMed  Google Scholar 

  18. Van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT. Methods Mol Biol. 2011;731:237–45.

    Article  CAS  PubMed  Google Scholar 

  19. Allred DC, Harvev JM, Berardo M, et al. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11:155–68.

    CAS  PubMed  Google Scholar 

  20. Frlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  Google Scholar 

  21. Mao XG, Guo G, Wang P, et al. Maintenance of critical properties of brain tumor stem-like cells after cryopreservation. Cell Mol Neurobiol. 2010;30:775–86.

    Article  PubMed  Google Scholar 

  22. Su YJ, Lai HM, Chang YW, et al. Direct reprogramming of stem cell properies in colon cancer cell by CD44. EMBO J. 2010;30:3186–99.

    Article  CAS  Google Scholar 

  23. Zhang LL, Jiao M, Li L, et al. Tumor spheres derived from prostate cancer cells possess chemoresistant and cancer stem cell properties. J Cancer Res Clin Oncol. 2012;138:675–86.

    Article  PubMed  Google Scholar 

  24. Zhang S, Balch C, Chan MW, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68:4311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Williams A, Datar R, Cote R. Technologies and methods used for the detection, enrichment and characterization of cancer stem cells. NatI Med J India. 2010;23:346–50.

    Google Scholar 

  26. Szotek PP, Pieretti VR, Masiakos PT, et al. Ovarin cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc NatI Acad Sci USA. 2006;103:11154–9.

    Article  CAS  Google Scholar 

  27. Guo Y, Liu S, Wang P. Expression profile of embryonic stem cell associated genes Oct4, Sox2 and Nanog in human gliomas. Histopathology. 2011;59:763–75.

    Article  PubMed  Google Scholar 

  28. Oppel F, Muller N, Schackert G. Sox2-RNAi attenutates S-phase entry and induces RhoA-dependent switch to protease-independent amoeboid migration in human glioma cells. Mol Cancer. 2011;10:137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ikushima H, Todo T, Ino Y. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem. 2011;286:41434–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang D, Zheng L, Shi H, et al. Suppression of Peritoneal tumorigenesis by placenta-derived mesenchymal stem cells expressing endostatin on colorectal cancer. Int J Med Sci. 2014;11:870–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li K, Li B, Gao LN, et al. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials. 2014;35:6332–43.

    Article  CAS  PubMed  Google Scholar 

  32. Yi F, Khan M, Gao H, et al. Increased differentiation capacity of bone marrow-derived mesenchymal stem cells in aquaporin-5 deficiency. Stem Cells Dev. 2012;21:2495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Desai A, Webb B, Geson SL. CD113+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells. Raidother Oncol. 2014;110:538–45.

    Article  CAS  Google Scholar 

  34. Xie ZY, Lv K, Xiong Y, Guo WH. ABCG2-meditated multidrug resistance and tumor-initiating capacity of side population cells from colon cancer. Oncol Res Treat. 2014;37(11):666–8. 670-2.

    Article  CAS  PubMed  Google Scholar 

  35. Wang F, Mi YJ, Chen XG, et al. Axitinib targeted cancer stem like cells to enhance efficacy of chemotherapeutic drugs via inhibiting the drug transport function of ABCG2. Mol Med. 2012;18:887–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu L, Liu X, Cui K, et al. SND1 acts downstream of TGFB1 and upstream of Smurf1 to promote breast cancer metastasis. Cancer Res. 2015;75:1275–86.

    Article  CAS  PubMed  Google Scholar 

  37. Joseph JV, Conroy S, Pavlov K, et al. Hypoxia enhanced migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF-1a-ZEB1 axis. Cancer Lett. 2015;359:107–16.

    Article  CAS  PubMed  Google Scholar 

  38. Piao Z, Hong CS, Jung MR, et al. Thymosin B4 induces invasion and migration of human colorectal cancer cells through the ILK/AKT/B-catenin signaling pathway. Biochem Biophys Tes Commun. 2014;452:858–64.

    Article  CAS  Google Scholar 

  39. Hollier BG, Evans K, Mani SA. The epithelial to mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 2009;14:29–43.

    Article  PubMed  Google Scholar 

  40. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morel AP, Lievre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3:e2888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao L, Zhou Y, Zhai B, et al. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines. BMC Gastroenterol. 2011;11:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang L, Guo H, Dong L, et al. Tanshione IIA inhibits the growth, attenuates the stemness and induces the apoptosis of human glioma stem cells. Oncol Rep. 2014;2:1303–11.

    Google Scholar 

  44. Lin C, Wang L, Wang H, et al. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL-6/STAT3/NF-kB signaling pathway. J Cell Biochem. 2013;114:2061–70.

    Article  CAS  PubMed  Google Scholar 

  45. Yasuda A. The stem cell factor/c-kit receptor pathway enhances proliferation and invasion of pancreatic cancer cells. Mol Cancer. 2006;5:46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aguilar C, Aguilar C, Lopez MR, et al. Co-stimulation with stem cell factor and erythropoietin enhances migration of c-kit expressing cervical cancer cells through the sustained activation of ERK1/2. Mol Med Rep. 2014;9:1895–902.

    CAS  PubMed  Google Scholar 

  47. Wiesner C, Nabha SM, Dos Santos EB, et al. C-kit and its ligand stem cell factor: potential contribution to prostate cancer bone metastasis. Neoplasia. 2008;10:996–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen L. Precancerous stem cells have the potential for both benign and malignant differentiation. PLoS One. 2007;2:e293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brian Druker J, Diana Griffith J, Michael Heinrich C, et al. inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000;96:925–32.

    Google Scholar 

  50. Bai CG, Hou XW, Wang F, et al. Stem cell factor-mediated wild-type KIT receptor activation is critical for gastrointestinal stromal tumor cell growth. World J Gastroenterol. 2012;18:2929–37.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Belloc F, Airiau K, Jeanneteau M, et al. The stem cell factor-c-KIT pathway must be inhibited to enable apoptosis induced by BCR-ABL inhibitors in chronic myelogenous leukemia cells. Leukemia. 2009;23:679–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81372506)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Luo.

Ethics declarations

Conflicts of interest

None

Additional information

Li Wang and JianTao Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, J., Li, Z. et al. Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells. Tumor Biol. 37, 7213–7227 (2016). https://doi.org/10.1007/s13277-015-4577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4577-6

Keywords

Navigation