Skip to main content
Log in

Isolation of Mesenchymal Stem Cells from Human Placental Decidua Basalis and Resistance to Hypoxia and Serum Deprivation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) are the most promising seed cells for cell therapy and tissue engineering, which can be isolated from various sources of human adult tissues such as bone marrow and adipose tissue. However, cells from these tissues must be obtained through invasive procedures and sometimes the individual difference is hard to control. Hence, the search continues for an ethically conducive, easily accessible and controllable source of stem cells. We herein report the isolation of a population of stem cells from the human placental decidua basalis (termed as PDB-MSCs), a maternal portion of placenta. PDB-MSCs were further shown to express markers common to MSCs and positive for SSEA-1, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81 and Oct-4. In order to facilitate the further utility in ischemic diseases, we tested the apoptosis of PDB-MSCs in hypoxia and serum deprivation, two components of ischemia in vivo. Taken together, our findings indicate that PDB-MSCs are resistant to hypoxia and serum deprivation, which may relate to Bcl-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147. doi:10.1126/science.284.5411.143.

    Article  PubMed  CAS  Google Scholar 

  2. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105, 93–98. doi:10.1161/hc0102.101442.

    Article  PubMed  Google Scholar 

  3. Haynesworth, S. E., Goshima, J., & Goldberg, V. M. (1992). Characterization of cells with osteogenic potential from human marrow. Bone, 13, 81–88. doi:10.1016/8756-3282(92)90364-3.

    Article  PubMed  CAS  Google Scholar 

  4. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2002). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Engineering, 7, 211–228. doi:10.1089/107632701300062859.

    Article  Google Scholar 

  5. Zvaifler, N. J., Mutafchieva, L. M., Adams, G., Edwards, C. J., Moss, J., Burger, J. A., et al. (2000). Mesenchymal precursor cells in the blood of normal individuals. Arthritis Research, 2, 477–488. doi:10.1186/ar130.

    Article  PubMed  CAS  Google Scholar 

  6. Trubiani, O., Primio, R. D., Traini, T., Pizzicannella, J., Scarano, A., & Piattelli, A. (2005). Morphological and cytofluorimetric analysis of adult mesenchymal stemcells expanded ex vivo from periodontal ligament. International Journal of Immunopathology and Pharmacology, 18, 213–221.

    PubMed  CAS  Google Scholar 

  7. Shih, D. T., Lee, D. C., Chen, S. C., Tsai, R. Y., Huang, C. T., Tsai, C. C., et al. (2005). Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells, 23, 1012–1020. doi:10.1634/stemcells.2004-0125.

    Article  PubMed  CAS  Google Scholar 

  8. Fehrer, C., & Lepperdinger, G. (2005). Mesenchymal stem cell aging. Experimental Gerontology, 40, 926–930. doi:10.1016/j.exger.2005.07.006.

    Article  PubMed  CAS  Google Scholar 

  9. In’t Anker, P. S., Scherjon, S. A., Keur, C. K., de Groot-Swings, G. M. J. S., Claas, F. H. J., & Fibbe, W. E. (2004). Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 22, 1338–1345. doi:10.1634/stemcells.2004-0058.

    Article  Google Scholar 

  10. Zhang, X. H., Mitsuru, A., Igura, K., Takahashi, K., Ichinose, S., Yamaguchi, S., et al. (2006). Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochemical and Biophysical Research Communications, 340, 944–952. doi:10.1016/j.bbrc.2005.12.091.

    Article  PubMed  CAS  Google Scholar 

  11. Yen, B. L., Huang, H., Chien, C. C., Jui, H. Y., Ko, B. S., Yao, M., et al. (2005). Isolation of multipotent cells from human term placenta. Stem Cells, 23, 3–9. doi:10.1634/stemcells.2004-0098.

    Article  PubMed  CAS  Google Scholar 

  12. Fukuchi, Y., Nakajima, H., Sugiyama, D., Hirose, I., Kitamura, T., & Tsuji, K. (2004). Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 22, 649–658. doi:10.1634/stemcells.22-5-649.

    Article  PubMed  CAS  Google Scholar 

  13. Cetrulo, C. L., Jr. (2006). Cord-Blood Mesenchymal Stem cells and tissue engineering. Stem Cell Reviews, 2, 163–168.

    Article  PubMed  Google Scholar 

  14. Chan, J., O’Donoghue, K., de la Fuente, J., Roberts, I. A., Kumar, S., Morgan, J. E., et al. (2005). Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells, 23, 93–102. doi:10.1634/stemcells.2004-0138.

    Article  PubMed  CAS  Google Scholar 

  15. Miao, Z. N., Jin, J., Chen, L., Zhu, J. Z., Huang, W., Zhao, J. D., et al. (2006). Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biology International, 30, 681–687. doi:10.1016/j.cellbi.2006.03.009.

    Article  PubMed  CAS  Google Scholar 

  16. Chien, C. C., Yen, B. L. J., Lee, F. K., Lai, T. H., Chen, Y. C., Chan, S. H., et al. (2006). In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells. Stem Cells, 24, 1759–1768. doi:10.1634/stemcells.2005-0521.

    Article  PubMed  Google Scholar 

  17. Chang, C. M., Kao, C. L., Chang, Y. L., Yang, M. J., Chen, Y. C., Sung, B. L., et al. (2007). Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochemical and Biophysical Research Communications, 357, 414–420. doi:10.1016/j.bbrc.2007.03.157.

    Article  PubMed  CAS  Google Scholar 

  18. Parolini, O., Alviano, F., Bagnara, G. P., Bilic, G., Bühring, H. J., Evangelista, M., et al. (2008). Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells, 26, 300–311. doi:10.1634/stemcells.2007-0594.

    Article  PubMed  Google Scholar 

  19. Tang, J. M., Xie, Q. Y., Pan, G. D., Wang, J. N., & Wang, M. J. (2006). Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. European Journal of Cardio-Thoracic Surgery, 30, 353–361. doi:10.1016/j.ejcts.2006.02.070.

    Article  PubMed  Google Scholar 

  20. Morigi, M., Introna, M., Imberti, B., Corna, D., Abbate, M., Rota, C., et al. (2008). Human bone marrow-mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells, 26, 2075–2082. doi:10.1634/stemcells.2007-0795.

    Article  PubMed  CAS  Google Scholar 

  21. Ohnishi, S., Yanagawa, B., Tanaka, K., Miyahara, Y., Obata, H., Kataoka, M., et al. (2008). Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. Journal of Molecular and Cellular Cardiology, 42, 88–97. doi:10.1016/j.yjmcc.2006.10.003.

    Article  CAS  Google Scholar 

  22. Wu, Y. J., Chen, L. W., Scott, P. G., & Tredget, E. E. (2007). Mesenchymal stem cells enhance wound healing through sifferentiation and angiogenesis. Stem Cells, 25, 2648–2659. doi:10.1634/stemcells.2007-0226.

    Article  PubMed  CAS  Google Scholar 

  23. Tang, Y. L., Tang, Y., Zhang, Y. C., Qian, K. P., Shen, L. P., & Phillips, M. I. (2005). Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. Journal of Molecular and Cellular Cardiology, 46, 1339–1350. doi:10.1016/j.jacc.2005.05.079.

    CAS  Google Scholar 

  24. Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multi-potent mesenchymal stem cells from umbilical cord blood. Blood, 103, 1669–1675. doi:10.1182/blood-2003-05-1670.

    Article  PubMed  CAS  Google Scholar 

  25. Secco, M., Zucconi, E., Vieira, N., Fogacaa, L. L. Q., Cerqueira, A., Carvalho, M. D. F., et al. (2008). Multipotent stem cells from umbilical cord: cord is richer than blood. Stem Cells, 26, 146–150. doi:10.1634/stemcells.2007-0381.

    Article  PubMed  CAS  Google Scholar 

  26. Kestendjieva, S., Kyurkchiev, D., Tsvetkova, G., Mehandjiev, T., Dimitrov, A., Nikolov, A., et al. (2008). Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biology International, 32, 724–732. doi:10.1016/j.cellbi.2008.02.002.

    Article  PubMed  CAS  Google Scholar 

  27. Fu, Y.-S., Cheng, Y.-C., Lin, M.-Y. A., Cheng, H., Chu, P.-M., Chou, S.-C., et al. (2006). Conversion of human umbilical cord mesenchymal stem cells in Wharton’s Jelly to dopaminergic neurons in vitro: potential therapeutic application for parkinsonism. Stem Cells, 24, 115–124. doi:10.1634/stemcells.2005-0053.

    Article  PubMed  Google Scholar 

  28. Montes, M. J., Alemán, P., García-Tortosa, C., Borja, C., Ruiz, C., & García-Olivares, E. (1996). Cultured human decidual stromal cells express antigens associated with hematopoietic cells. Journal of Reproductive Immunology, 30, 53–66. doi:10.1016/0165-0378(96)00954-0.

    Article  PubMed  CAS  Google Scholar 

  29. Oliver, C., Cowdrey, N., Abadía-Molina, A. C., & Olivares, E. (1999). Antigen phenotype of cultured decidual stromal cells of human term decidua. Journal of Reproductive Immunology, 45, 19–30. doi:10.1016/S0165-0378(99)00041-8.

    Article  PubMed  CAS  Google Scholar 

  30. Heppenstall, R. B., Grislis, G., & Hunt, T. K. (1975). Tissue gas tensions and oxygen consumption in healing bone defects. Clinical Orthopaedics and Related Research, 106, 357–365. doi:10.1097/00003086-197501000-00048.

    Article  PubMed  Google Scholar 

  31. Packer, L., & Fuehr, K. (1977). Low oxygen concentrations extends the lifespan of cultured human diploid cells. Nature, 267, 423–425. doi:10.1038/267423a0.

    Article  PubMed  CAS  Google Scholar 

  32. Bialik, S., Cryns, V. L., Drincic, A., Miyata, S., Wollowick, A. L., Srinivasan, A., et al. (1999). The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes. Circulation Research, 85, 403–414.

    PubMed  CAS  Google Scholar 

  33. Geng, Y. J. (2003). Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Annals of the New York Academy of Sciences, 1010, 687–697. doi:10.1196/annals.1299.126.

    Article  PubMed  CAS  Google Scholar 

  34. Zhu, W. Q., Chen, J. H., Cong, X. F., Hu, S. S., & Chen, X. (2006). Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells, 24, 416–425. doi:10.1634/stemcells.2005-0121.

    Article  PubMed  Google Scholar 

  35. Xu, R. X., Chen, J. H., Cong, X. F., Hu, S. S., & Chen, X. (2008). Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2. Journal of Cellular Biochemistry, 103, 256–269. doi:10.1002/jcb.21402.

    Article  PubMed  CAS  Google Scholar 

  36. Mylotte, L. A., Duffy, A. M., Murphy, M., O’Brien, T., Samali, A., Barry, F., et al. (2008). Metabolic flexibility permits MSC survival in an ischemic environment. Stem Cells, 26, 1325–1336. doi:10.1634/stemcells.2007-1072.

    Article  PubMed  CAS  Google Scholar 

  37. Copland, I. B., Lord-Dufour, S., Cuerquis, J., Legault-Coutu, D., Annabi, B., Wang, E., et al. (2009). Improved autograft survival of mesenchymal stromal cells by plasminogen activator inhibitor 1 inhibition. Stem Cells, 27, 467–477.

    Article  PubMed  CAS  Google Scholar 

  38. Li, W. Z., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25, 2118–2127. doi:10.1634/stemcells.2006-0771.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National High Technology Research and Development Program (“863”) of China (2007AA021900) and the Key Project of Science and Technology Bureau of Sichuan province (No.07SG111-004 and No.2008SZ0035). The authors are indebted to Dr. Guang-Qian Zhou for expert review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YC., Yang, ZM., Chen, XH. et al. Isolation of Mesenchymal Stem Cells from Human Placental Decidua Basalis and Resistance to Hypoxia and Serum Deprivation. Stem Cell Rev and Rep 5, 247–255 (2009). https://doi.org/10.1007/s12015-009-9069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9069-x

Keywords

Navigation