Skip to main content

Advertisement

Log in

The Epithelial-to-Mesenchymal Transition and Cancer Stem Cells: A Coalition Against Cancer Therapies

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

During cancer progression, some cells within the primary tumor may reactivate a latent embryonic program known as epithelial-to-mesenchymal transition (EMT). Through EMT, transformed epithelial cells can acquire the mesenchymal traits that seem to facilitate metastasis. Indeed, there is accumulating evidence that EMT and mesenchymal-related gene expression are associated with aggressive breast cancer subtypes and poor clinical outcome in breast cancer patients. More recently, the EMT program was shown to endow normal and transformed mammary epithelial cells with stem cell properties, including the ability to self-renew and efficiently initiate tumors. This link between EMT and stem cells may have numerous implications in the progression of breast tumors. The EMT process may facilitate the generation of cancer cells with the mesenchymal traits needed for dissemination as well as the self-renewal properties needed for initiation of secondary tumors. Breast cancer stem cells are resistant to many conventional cancer therapies, which can promote tumor relapse. Therefore, the generation of cancer stem cells by EMT may promote the development of refractory and resistant breast tumors. The purpose of this review is to summarize the findings related to EMT and stem cells in cancer progression and therapy resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

AKT:

v-akt murine thyoma viral oncogene homolog 1

ALDH:

Aldehyde dehydrogenase

CSC:

Cancer stem cell

CXCR4:

Chemokine (C-X-C motif) receptor 4

EMT:

Epithelial-to-mesenchymal transition

EGFR:

Epidermal growth factor receptor

ESA:

Epithelial-specific antigen

FN:

Fibronectin

HER2:

Human epidermal growth factor receptor 2 (also known as ERBB2)

HSC:

Hematopoietic stem cell

IBC:

Inflammatory breast cancer

MAPK:

Mitogen-activated protein kinase

MaSC:

Mammary stem cell

MBC:

Metaplastic breast cancer

MET:

Mesenchymal-to-epithelial transition

Sca-1:

Stem cell antigen-1

SMA:

Smooth-muscle actin

TCF4:

Transcription factor 4

TGF-β:

Transforming growth factor beta

References

  1. Shook D, Keller R. Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mech Dev. 2003;120(11):1351–83. doi:10.1016/j.mod.2003.06.005.

    Article  PubMed  CAS  Google Scholar 

  2. Kalluri R, Neilson EG. Epithelial–mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003;112(12):1776–84.

    PubMed  CAS  Google Scholar 

  3. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54. doi:10.1038/nrc822.

    Article  PubMed  CAS  Google Scholar 

  4. Savagner P, Boyer B, Valles AM, Jouanneau J, Thiery JP. Modulations of the epithelial phenotype during embryogenesis and cancer progression. Cancer Treat Res. 1994;71:229–49.

    PubMed  CAS  Google Scholar 

  5. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 1995;154(1):8–20. doi:10.1159/000147748.

    Article  CAS  Google Scholar 

  6. Thiery JP, Chopin D. Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev. 1999;18(1):31–42. doi:10.1023/A:1006256219004.

    Article  PubMed  CAS  Google Scholar 

  7. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008;133(4):704–15. doi:10.1016/j.cell.2008.03.027.

    Article  PubMed  CAS  Google Scholar 

  8. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414(6859):105–11. doi:10.1038/35102167.

    Article  PubMed  CAS  Google Scholar 

  9. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7. doi:10.1038/nm0797-730.

    Article  PubMed  CAS  Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8. doi:10.1073/pnas.0530291100.

    Article  PubMed  CAS  Google Scholar 

  11. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445(7123):106–10. doi:10.1038/nature05372.

    Article  PubMed  CAS  Google Scholar 

  12. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445(7123):111–5. doi:10.1038/nature05384.

    Article  PubMed  CAS  Google Scholar 

  13. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature 2004;432(7015):396–401. doi:10.1038/nature03128.

    Article  PubMed  CAS  Google Scholar 

  14. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9. doi:10.1093/jnci/djn123.

    Article  PubMed  CAS  Google Scholar 

  15. Sabbah M, Emami S, Redeuilh G, Julien S, Prevost G, Zimber A, et al. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat. 2008;11:123–51.

    Article  PubMed  CAS  Google Scholar 

  16. Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M. Vimentin and epithelial–mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs. 2007;185(1–3):191–203. doi:10.1159/000101320.

    Article  PubMed  CAS  Google Scholar 

  17. Yang J, Weinberg RA. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29. doi:10.1158/1078-0432.CCR-05-1492.

    Article  PubMed  CAS  Google Scholar 

  18. Thiery JP. Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15(6):740–6. doi:10.1016/j.ceb.2003.10.006.

    Article  PubMed  CAS  Google Scholar 

  19. Agiostratidou G, Hulit J, Phillips GR, Hazan RB. Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. J Mammary Gland Biol Neoplasia. 2007;12(2–3):127–33. doi:10.1007/s10911-007-9044-6.

    Article  PubMed  Google Scholar 

  20. Davies JA. Mesenchyme to epithelium transition during development of the mammalian kidney tubule. Acta Anat (Basel). 1996;156(3):187–201. doi:10.1159/000147846.

    Article  CAS  Google Scholar 

  21. Gammill LS, Bronner-Fraser M. Neural crest specification: migrating into genomics. Nat Rev Neurosci. 2003;4(10):795–805. doi:10.1038/nrn1219.

    Article  PubMed  CAS  Google Scholar 

  22. Turley EA, Veiseh M, Radisky DC, Bissell MJ. Mechanisms of disease: epithelial–mesenchymal transition—does cellular plasticity fuel neoplastic progression? Nat Clin Pract Oncol. 2008;5(5):280–90. doi:10.1038/ncponc1089.

    Article  PubMed  CAS  Google Scholar 

  23. Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol. 2008;19(3):294–308. doi:10.1016/j.semcdb.2008.02.001.

    Article  PubMed  CAS  Google Scholar 

  24. Bellairs R. The primitive streak. Anat Embryol (Berl). 1986;174(1):1–14. doi:10.1007/BF00318331.

    Article  CAS  Google Scholar 

  25. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42. doi:10.1038/nrm1835.

    Article  PubMed  CAS  Google Scholar 

  26. Duband JL, Monier F, Delannet M, Newgreen D. Epithelium–mesenchyme transition during neural crest development. Acta Anat (Basel). 1995;154(1):63–78. doi:10.1159/000147752.

    Article  CAS  Google Scholar 

  27. Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004;6(1):1–11.

    PubMed  CAS  Google Scholar 

  28. Okada H, Danoff TM, Kalluri R, Neilson EG. Early role of Fsp1 in epithelial–mesenchymal transformation. Am J Physiol. 1997;273(4 Pt 2):F563–74.

    PubMed  CAS  Google Scholar 

  29. Chilosi M, Poletti V, Zamo A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/beta-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol. 2003;162(5):1495–502.

    PubMed  CAS  Google Scholar 

  30. Schafer M, Werner S. Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol. 2008;9(8):628–38. doi:10.1038/nrm2455.

    Article  PubMed  CAS  Google Scholar 

  31. Martin P. Wound healing—aiming for perfect skin regeneration. Science 1997;276(5309):75–81. doi:10.1126/science.276.5309.75.

    Article  PubMed  CAS  Google Scholar 

  32. Savagner P, Kusewitt DF, Carver EA, Magnino F, Choi C, Gridley T, et al. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol. 2005;202(3):858–66. doi:10.1002/jcp.20188.

    Article  PubMed  CAS  Google Scholar 

  33. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315(26):1650–9.

    PubMed  CAS  Google Scholar 

  34. Gavert N, Ben-Ze’ev A. Epithelial–mesenchymal transition and the invasive potential of tumors. Trends Mol Med. 2008;14(5):199–209. doi:10.1016/j.molmed.2008.03.004.

    Article  PubMed  CAS  Google Scholar 

  35. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453–8. doi:10.1038/nrc1098.

    Article  PubMed  CAS  Google Scholar 

  36. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117(7):927–39. doi:10.1016/j.cell.2004.06.006.

    Article  PubMed  CAS  Google Scholar 

  37. Mani SA, Yang J, Brooks M, Schwaninger G, Zhou A, Miura N, et al. Mesenchyme Forkhead 1 (FOXC2) plays a key role in metastasis and is associated with aggressive basal-like breast cancers. Proc Natl Acad Sci USA. 2007;104(24):10069–74. doi:10.1073/pnas.0703900104.

    Article  PubMed  CAS  Google Scholar 

  38. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J, et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002;21(20):3241–6. doi:10.1038/sj.onc.1205416.

    Article  PubMed  CAS  Google Scholar 

  39. Moustakas A, Heldin CH. Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98(10):1512–20. doi:10.1111/j.1349-7006.2007.00550.x.

    Article  PubMed  CAS  Google Scholar 

  40. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005;24(37):5764–74. doi:10.1038/sj.onc.1208927.

    Article  PubMed  CAS  Google Scholar 

  41. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000;275(47):36803–10. doi:10.1074/jbc.M005912200.

    Article  PubMed  CAS  Google Scholar 

  42. Massague J. TGFbeta in Cancer. Cell 2008;134(2):215–30. doi:10.1016/j.cell.2008.07.001.

    Article  PubMed  CAS  Google Scholar 

  43. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28. doi:10.1038/nrc2131.

    Article  PubMed  CAS  Google Scholar 

  44. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008;68(2):537–44. doi:10.1158/0008-5472.CAN-07-5682.

    Article  PubMed  CAS  Google Scholar 

  45. Thisse B, el Messal M, Perrin-Schmitt F. The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern. Nucleic Acids Res. 1987;15(8):3439–53. doi:10.1093/nar/15.8.3439.

    Article  PubMed  CAS  Google Scholar 

  46. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol. 2000;2(2):84–9. doi:10.1038/35000034.

    Article  PubMed  CAS  Google Scholar 

  47. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83. doi:10.1038/35000025.

    Article  PubMed  CAS  Google Scholar 

  48. Miura N, Wanaka A, Tohyama M, Tanaka K. MFH-1, a new member of the fork head domain family, is expressed in developing mesenchyme. FEBS Lett. 1993;326(1–3):171–6. doi:10.1016/0014-5793(93)81785-X.

    Article  PubMed  CAS  Google Scholar 

  49. Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM, et al. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis. 2008;25(6):629–42. doi:10.1007/s10585-008-9170-6.

    Article  PubMed  CAS  Google Scholar 

  50. Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R, et al. Association of increased basement membrane invasiveness with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol. 1992;150(3):534–44. doi:10.1002/jcp.1041500314.

    Article  PubMed  CAS  Google Scholar 

  51. Sommers CL, Heckford SE, Skerker JM, Worland P, Torri JA, Thompson EW, et al. Loss of epithelial markers and acquisition of vimentin expression in adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res. 1992;52(19):5190–7.

    PubMed  CAS  Google Scholar 

  52. Gilles C, Polette M, Zahm JM, Tournier JM, Volders L, Foidart JM, et al. Vimentin contributes to human mammary epithelial cell migration. J Cell Sci. 1999;112(Pt 24):4615–25.

    PubMed  CAS  Google Scholar 

  53. Oka H, Shiozaki H, Kobayashi K, Inoue M, Tahara H, Kobayashi T, et al. Expression of E-cadherin cell adhesion molecules in human breast cancer tissues and its relationship to metastasis. Cancer Res. 1993;53(7):1696–701.

    PubMed  CAS  Google Scholar 

  54. Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell. 2006;10(5):437–49. doi:10.1016/j.ccr.2006.09.013.

    Article  PubMed  CAS  Google Scholar 

  55. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54. doi:10.1158/0008-5472.CAN-07-2938.

    Article  PubMed  CAS  Google Scholar 

  56. Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM, et al. Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res. 2008;68(3):937–45. doi:10.1158/0008-5472.CAN-07-2148.

    Article  PubMed  CAS  Google Scholar 

  57. Tarin D, Thompson EW, Newgreen DF. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 2005;65(14):5996–6000, discussion 6000-1. doi:10.1158/0008-5472.CAN-05-0699.

    Article  PubMed  CAS  Google Scholar 

  58. Thompson EW, Newgreen DF, Tarin D. Carcinoma invasion and metastasis: a role for epithelial–mesenchymal transition? Cancer Res. 2005;65(14):5991–5, discussion 5995. doi:10.1158/0008-5472.CAN-05-0616.

    Article  PubMed  CAS  Google Scholar 

  59. Weigelt B, Peterse JL, van’t Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5(8):591–602. doi:10.1038/nrc1670.

    Article  PubMed  CAS  Google Scholar 

  60. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature 2000;406(6797):747–52. doi:10.1038/35021093.

    Article  PubMed  CAS  Google Scholar 

  61. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74. doi:10.1073/pnas.191367098.

    Article  PubMed  CAS  Google Scholar 

  62. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418–23. doi:10.1073/pnas.0932692100.

    Article  PubMed  CAS  Google Scholar 

  63. Troester MA, Hoadley KA, Sorlie T, Herbert BS, Borresen-Dale AL, Lonning PE, et al. Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res. 2004;64(12):4218–26. doi:10.1158/0008-5472.CAN-04-0107.

    Article  PubMed  CAS  Google Scholar 

  64. Dairkee SH, Ljung BM, Smith H, Hackett A. Immunolocalization of a human basal epithelium specific keratin in benign and malignant breast disease. Breast Cancer Res Treat. 1987;10(1):11–20. doi:10.1007/BF01806130.

    Article  PubMed  CAS  Google Scholar 

  65. Santini D, Ceccarelli C, Taffurelli M, Pileri S, Marrano D. Differentiation pathways in primary invasive breast carcinoma as suggested by intermediate filament and biopathological marker expression. J Pathol. 1996;179(4):386–91. doi:10.1002/(SICI)1096-9896(199608)179:4<386::AID-PATH631>3.0.CO;2-V.

    Article  PubMed  CAS  Google Scholar 

  66. Korsching E, Jeffrey SS, Meinerz W, Decker T, Boecker W, Buerger H. Basal carcinoma of the breast revisited: an old entity with new interpretations. J Clin Pathol. 2008;61(5):553–60. doi:10.1136/jcp.2008.055475.

    Article  PubMed  CAS  Google Scholar 

  67. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 2006;25(15):2273–84. doi:10.1038/sj.onc.1209254.

    Article  PubMed  CAS  Google Scholar 

  68. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27. doi:10.1016/j.ccr.2006.10.008.

    Article  PubMed  CAS  Google Scholar 

  69. Jechlinger M, Grunert S, Tamir IH, Janda E, Ludemann S, Waerner T, et al. Expression profiling of epithelial plasticity in tumor progression. Oncogene 2003;22(46):7155–69. doi:10.1038/sj.onc.1206887.

    Article  PubMed  CAS  Google Scholar 

  70. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial–mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68(4):989–97. doi:10.1158/0008-5472.CAN-07-2017.

    Article  PubMed  CAS  Google Scholar 

  71. Huvos AG, Lucas JC Jr, Foote FW Jr. Metaplastic breast carcinoma. Rare form of mammary cancer. N Y State J Med. 1973;73(9):1078–82.

    PubMed  CAS  Google Scholar 

  72. Wargotz ES, Deos PH, Norris HJ. Metaplastic carcinomas of the breast. II. Spindle cell carcinoma. Hum Pathol. 1989;20(8):732–40. doi:10.1016/0046-8177(89)90065-8.

    Article  PubMed  CAS  Google Scholar 

  73. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. IV. Squamous cell carcinoma of ductal origin. Cancer 1990;65(2):272–6. doi:10.1002/1097-0142(19900115)65:2<272::AID-CNCR2820650215>3.0.CO;2-6.

    Article  PubMed  CAS  Google Scholar 

  74. Weigelt B, Kreike B, Reis-Filho JS. Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Res Treat. 2008; doi:10.1007/s10549-008-0197-9.

  75. Lien HC, Hsiao YH, Lin YS, Yao YT, Juan HF, Kuo WH, et al. Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial–mesenchymal transition. Oncogene 2007;26(57):7859–71. doi:10.1038/sj.onc.1210593.

    Article  PubMed  CAS  Google Scholar 

  76. Cristofanilli M, Valero V, Buzdar AU, Kau SW, Broglio KR, Gonzalez-Angulo AM, et al. Inflammatory breast cancer (IBC) and patterns of recurrence: understanding the biology of a unique disease. Cancer 2007;110(7):1436–44. doi:10.1002/cncr.22927.

    Article  PubMed  Google Scholar 

  77. Ueno NT, Buzdar AU, Singletary SE, Ames FC, McNeese MD, Holmes FA, et al. Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at M. D. Anderson Cancer Center. Cancer Chemother Pharmacol. 1997;40(4):321–9. doi:10.1007/s002800050664.

    Article  PubMed  CAS  Google Scholar 

  78. Hennessy BT, Gonzalez-Angulo AM, Hortobagyi GN, Cristofanilli M, Kau SW, Broglio K, et al. Disease-free and overall survival after pathologic complete disease remission of cytologically proven inflammatory breast carcinoma axillary lymph node metastases after primary systemic chemotherapy. Cancer 2006;106(5):1000–6. doi:10.1002/cncr.21726.

    Article  PubMed  Google Scholar 

  79. Kleer CG, Zhang Y, Merajver SD. CCN6 (WISP3) as a new regulator of the epithelial phenotype in breast cancer. Cells Tissues Organs. 2007;185(1–3):95–9. doi:10.1159/000101308.

    Article  PubMed  CAS  Google Scholar 

  80. Zhang Y, Pan Q, Zhong H, Merajver SD, Kleer CG. Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells. Breast Cancer Res. 2005;7(6):R1080–9. doi:10.1186/bcr1351.

    Article  PubMed  CAS  Google Scholar 

  81. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70. doi:10.1101/gad.1061803.

    Article  PubMed  CAS  Google Scholar 

  82. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature 2006;439(7072):84–8. doi:10.1038/nature04372.

    Article  PubMed  CAS  Google Scholar 

  83. Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K, et al. The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res. 2008;10(3):R53. doi:10.1186/bcr2108.

    Article  PubMed  CAS  Google Scholar 

  84. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, et al. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res. 2006;8(5):R59. doi:10.1186/bcr1610.

    Article  PubMed  CAS  Google Scholar 

  85. Stingl J, Caldas C. Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer. 2007;7(10):791–9. doi:10.1038/nrc2212.

    Article  PubMed  CAS  Google Scholar 

  86. Liao MJ, Zhang CC, Zhou B, Zimonjic DB, Mani SA, Kaba M, et al. Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res. 2007;67(17):8131–8. doi:10.1158/0008-5472.CAN-06-4493.

    Article  PubMed  CAS  Google Scholar 

  87. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73. doi:10.1016/j.ccr.2007.01.013.

    Article  PubMed  CAS  Google Scholar 

  88. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003;21:759–806. doi:10.1146/annurev.immunol.21.120601.141007.

    Article  PubMed  CAS  Google Scholar 

  89. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science 2002;296(5570):1046–9. doi:10.1126/science.1067431.

    Article  PubMed  CAS  Google Scholar 

  90. Brisken C. Hormonal control of alveolar development and its implications for breast carcinogenesis. J Mammary Gland Biol Neoplasia. 2002;7(1):39–48. doi:10.1023/A:1015718406329.

    Article  PubMed  Google Scholar 

  91. Villadsen R, Fridriksdottir AJ, Ronnov-Jessen L, Gudjonsson T, Rank F, LaBarge MA, et al. Evidence for a stem cell hierarchy in the adult human breast. J Cell Biol. 2007;177(1):87–101. doi:10.1083/jcb.200611114.

    Article  PubMed  CAS  Google Scholar 

  92. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006;439(7079):993–7.

    PubMed  CAS  Google Scholar 

  93. Deome KB, Faulkin LJ Jr, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19(5):515–20.

    PubMed  CAS  Google Scholar 

  94. Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin LJ Jr. The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci USA. 1968;61(1):53–60. doi:10.1073/pnas.61.1.53.

    Article  PubMed  CAS  Google Scholar 

  95. Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001;67(2):93–109. doi:10.1023/A:1010615124301.

    Article  PubMed  CAS  Google Scholar 

  96. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 Is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67. doi:10.1016/j.stem.2007.08.014.

    Article  PubMed  CAS  Google Scholar 

  97. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367(6464):645–8. doi:10.1038/367645a0.

    Article  PubMed  CAS  Google Scholar 

  98. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005;65(13):5506–11. doi:10.1158/0008-5472.CAN-05-0626.

    Article  PubMed  CAS  Google Scholar 

  99. Liu R, Wang X, Chen GY, Dalerba P, Gurney A, Hoey T, et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N Engl J Med. 2007;356(3):217–26. doi:10.1056/NEJMoa063994.

    Article  PubMed  CAS  Google Scholar 

  100. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 2006;12(19):5615–21. doi:10.1158/1078-0432.CCR-06-0169.

    Article  PubMed  CAS  Google Scholar 

  101. Kakarala M, Wicha MS. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol. 2008;26(17):2813–20. doi:10.1200/JCO.2008.16.3931.

    Article  PubMed  Google Scholar 

  102. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5(9):744–9. doi:10.1038/nrc1694.

    Article  PubMed  CAS  Google Scholar 

  103. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23. doi:10.1016/j.stem.2007.06.002.

    Article  PubMed  CAS  Google Scholar 

  104. Heron M. Deaths: leading causes for 2004. Natl Vital Stat Rep. 2007;56(5):1–95.

    PubMed  Google Scholar 

  105. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55(1):10–30. doi:10.3322/canjclin.55.1.10.

    Article  PubMed  Google Scholar 

  106. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007;131(6):1109–23. doi:10.1016/j.cell.2007.10.054.

    Article  PubMed  CAS  Google Scholar 

  107. Jones RJ, Matsui WH, Smith BD. Cancer stem cells: are we missing the target? J. Natl Cancer Inst. 2004;96(8):583–5.

    Google Scholar 

  108. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–21. doi:10.1038/nbt1350.

    Article  PubMed  CAS  Google Scholar 

  109. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67. doi:10.1186/1476-4598-5-67.

    Article  PubMed  CAS  Google Scholar 

  110. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10(2):R25. doi:10.1186/bcr1982.

    Article  PubMed  CAS  Google Scholar 

  111. Phillips TM, McBride WH, Pajonk F. The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006;98(24):1777–85. doi:10.1571/cs4-6-06cc.

    Article  PubMed  Google Scholar 

  112. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA. 2007;104(2):618–23. doi:10.1073/pnas.0606599104.

    Article  PubMed  CAS  Google Scholar 

  113. Korkaya H, Paulson A, Iovino F, Wicha MS. HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008;27(47):6120–30. doi:10.1038/onc.2008.207.

    Article  PubMed  CAS  Google Scholar 

  114. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253–61. doi:10.1056/NEJMra061808.

    Article  PubMed  CAS  Google Scholar 

  115. Donnenberg VS, Donnenberg AD. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol. 2005;45(8):872–7. doi:10.1177/0091270005276905.

    Article  PubMed  CAS  Google Scholar 

  116. Wang S, Yang D, Lippman ME. Targeting Bcl-2 and Bcl-XL with nonpeptidic small-molecule antagonists. Semin Oncol. 2003;30(5):133–42. doi:10.1053/j.seminoncol.2003.08.015.

    Article  PubMed  CAS  Google Scholar 

  117. Zhuo WL, Wang Y, Zhuo XL, Zhang YS, Chen ZT. Short interfering RNA directed against TWIST, a novel zinc finger transcription factor, increases A549 cell sensitivity to cisplatin via MAPK/mitochondrial pathway. Biochem Biophys Res Commun. 2008;369(4):1098–102. doi:10.1016/j.bbrc.2008.02.143.

    Article  PubMed  CAS  Google Scholar 

  118. Kajiyama H, Shibata K, Terauchi M, Yamashita M, Ino K, Nawa A, et al. Chemoresistance to paclitaxel induces epithelial–mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol. 2007;31(2):277–83.

    PubMed  CAS  Google Scholar 

  119. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol. 2007;14(12):3629–37. doi:10.1245/s10434-007-9583-5.

    Article  PubMed  Google Scholar 

  120. Hiscox S, Jiang WG, Obermeier K, Taylor K, Morgan L, Burmi R, et al. Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. Int J Cancer. 2006;118(2):290–301. doi:10.1002/ijc.21355.

    Article  PubMed  CAS  Google Scholar 

  121. Hiscox S, Morgan L, Barrow D, Dutkowskil C, Wakeling A, Nicholson RI. Tamoxifen resistance in breast cancer cells is accompanied by an enhanced motile and invasive phenotype: inhibition by gefitinib (‘Iressa’, ZD1839). Clin Exp Metastasis. 2004;21(3):201–12. doi:10.1023/B:CLIN.0000037697.76011.1d.

    Article  PubMed  CAS  Google Scholar 

  122. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67(5):1979–87. doi:10.1158/0008-5472.CAN-06-1479.

    Article  PubMed  CAS  Google Scholar 

  123. Kajita M, McClinic KN, Wade PA. Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol. 2004;24(17):7559–66. doi:10.1128/MCB.24.17.7559-7566.2004.

    Article  PubMed  CAS  Google Scholar 

  124. Tsukamoto H, Shibata K, Kajiyama H, Terauchi M, Nawa A, Kikkawa F. Irradiation-induced epithelial–mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecol Oncol. 2007;107(3):500–4. doi:10.1016/j.ygyno.2007.08.058.

    Article  PubMed  Google Scholar 

  125. Robson EJ, Khaled WT, Abell K, Watson CJ. Epithelial-to-mesenchymal transition confers resistance to apoptosis in three murine mammary epithelial cell lines. Differentiation 2006;74(5):254–64. doi:10.1111/j.1432-0436.2006.00075.x.

    Article  PubMed  CAS  Google Scholar 

  126. Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N, et al. Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res. 2005;65(20):9455–62. doi:10.1158/0008-5472.CAN-05-1058.

    Article  PubMed  CAS  Google Scholar 

  127. Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W, Fu L, et al. Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res. 2005;11(24 Pt 1):8686–98. doi:10.1158/1078-0432.CCR-05-1492.

    Article  PubMed  CAS  Google Scholar 

  128. Buck E, Eyzaguirre A, Barr S, Thompson S, Sennello R, Young D, et al. Loss of homotypic cell adhesion by epithelial–mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. Mol Cancer Ther. 2007;6(2):532–41. doi:10.1158/1535-7163.MCT-06-0462.

    Article  PubMed  CAS  Google Scholar 

  129. Fuchs BC, Fujii T, Dorfman JD, Goodwin JM, Zhu AX, Lanuti M, et al. Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Res. 2008;68(7):2391–9. doi:10.1158/0008-5472.CAN-07-2460.

    Article  PubMed  CAS  Google Scholar 

  130. Konecny GE, Venkatesan N, Yang G, Dering J, Ginther C, Finn R, et al. Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. Br J Cancer. 2008;98(6):1076–84. doi:10.1038/sj.bjc.6604278.

    Article  PubMed  CAS  Google Scholar 

  131. Suo Z, Risberg B, Kalsson MG, Willman K, Tierens A, Skovlund E, et al. EGFR family expression in breast carcinomas. c-erbB-2 and c-erbB-4 receptors have different effects on survival. J Pathol. 2002;196(1):17–25. doi:10.1002/path.1003.

    Article  PubMed  CAS  Google Scholar 

  132. Thor AD, Edgerton SM, Liu S, Moore DH 2nd, Kwiatkowski DJ. Gelsolin as a negative prognostic factor and effector of motility in erbB-2-positive epidermal growth factor receptor-positive breast cancers. Clin Cancer Res. 2001;7(8):2415–24.

    PubMed  CAS  Google Scholar 

  133. Arteaga CL, Truica CI. Challenges in the development of anti-epidermal growth factor receptor therapies in breast cancer. Semin Oncol. 2004;31(1):3–8. doi:10.1053/j.seminoncol.2004.01.006.

    Article  PubMed  CAS  Google Scholar 

  134. Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell. 2005;8(3):197–209. doi:10.1016/j.ccr.2005.07.009.

    Article  PubMed  CAS  Google Scholar 

  135. Debies MT, Gestl SA, Mathers JL, Mikse OR, Leonard TL, Moody SE, et al. Tumor escape in a Wnt1-dependent mouse breast cancer model is enabled by p19Arf/p53 pathway lesions but not p16 Ink4a loss. J Clin Invest. 2008;118(1):51–63. doi:10.1172/JCI33320.

    Article  PubMed  CAS  Google Scholar 

  136. Valdes F, Alvarez AM, Locascio A, Vega S, Herrera B, Fernandez M, et al. The epithelial mesenchymal transition confers resistance to the apoptotic effects of transforming growth factor Beta in fetal rat hepatocytes. Mol Cancer Res. 2002;1(1):68–78.

    PubMed  CAS  Google Scholar 

  137. Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem. 2003;278(23):21113–23. doi:10.1074/jbc.M211304200.

    Article  PubMed  CAS  Google Scholar 

  138. Vega S, Morales AV, Ocana OH, Valdes F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004;18(10):1131–43. doi:10.1101/gad.294104.

    Article  PubMed  CAS  Google Scholar 

  139. Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM, et al. Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 2005;123(4):641–53. doi:10.1016/j.cell.2005.09.029.

    Article  PubMed  CAS  Google Scholar 

  140. Puisieux A, Valsesia-Wittmann S, Ansieau S. A twist for survival and cancer progression. Br J Cancer. 2006;94(1):13–7. doi:10.1038/sj.bjc.6602876.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We apologize to the researchers whose work could not be included in this review because of space limitation. We thank Robert A. Weinberg for his previous and continued support. We also thank Karen Phillips from the Department of Scientific Publications at The University of Texas M. D. Anderson Cancer Center and Lovepreet Mann for critical reading of the manuscript. S.A.M.’s laboratory is supported by the Jimmy V Foundation as well as by The University of Texas M. D. Anderson Cancer Center Research Trust Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sendurai A. Mani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollier, B.G., Evans, K. & Mani, S.A. The Epithelial-to-Mesenchymal Transition and Cancer Stem Cells: A Coalition Against Cancer Therapies. J Mammary Gland Biol Neoplasia 14, 29–43 (2009). https://doi.org/10.1007/s10911-009-9110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-009-9110-3

Keywords

Navigation