Skip to main content

Advertisement

Log in

An integrative transcriptomic analysis reveals p53 regulated miRNA, mRNA, and lncRNA networks in nasopharyngeal carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

It has been reported that p53 dysfunction is closely related to the carcinogenesis of nasopharyngeal carcinoma (NPC). Recently, an increasing body of evidence has indicated that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) participate in p53-associated signaling pathways and, in addition to mRNAs, form a complex regulation network to promote tumor occurrence and progression. The aim of this study was to elucidate the p53-regulated miRNAs, mRNAs, and lncRNAs and their regulating networks in NPC. Firstly, we overexpressed p53 in the NPC cell line HNE2 and performed transcriptomic gene expression profiling (GEP) analysis, which included miRNAs, mRNAs, and lncRNAs, using microarray technology at 0, 12, 24, and 48 h after transfection. There were 38 miRNAs (33 upregulated and 5 downregulated), 2107 mRNAs (296 upregulated and 1811 downregulated), and 1190 lncRNAs (133 upregulated and 1057 downregulated) that were significantly dysregulated by p53. Some of the dysregulated molecules were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). Then, we integrated previously published miRNAs, mRNAs, and lncRNAs GEP datasets from NPC biopsies to investigate the expression of these p53 regulated molecules and found that 7 miRNAs, 218 mRNAs, and 101 lncRNAs regulated by p53 were also differentially expressed in NPC tissues. Finally, p53-regulated miRNA, mRNA, and lncRNA networks were constructed using bioinformatics methods. These miRNAs, mRNAs, and lncRNAs may participate in p53 downstream signaling pathways and play important roles in the carcinogenesis of NPC. Thorough investigations of their biological functions and regulating relationships will provide a novel view of the p53 signaling pathway, and the restoration of p53 functioning or its downstream gene regulating network is potentially of great value in treating NPC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeng Z, Huang H, Zhang W, Xiang B, Zhou M, et al. Nasopharyngeal carcinoma: advances in genomics and molecular genetics. Sci China Life Sci. 2011;54:966–75.

    Article  PubMed  Google Scholar 

  2. Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR, et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res. 2004;64:1972–4.

    Article  CAS  PubMed  Google Scholar 

  3. Zeng Z, Zhou Y, Zhang W, Li X, Xiong W, et al. Family-based association analysis validates chromosome 3p21 as a putative nasopharyngeal carcinoma susceptibility locus. Genet Med. 2006;8:156–60.

    Article  CAS  PubMed  Google Scholar 

  4. Stoker SD, van Diessen JN, de Boer JP, Karakullukcu B, Leemans CR, et al. Current treatment options for local residual nasopharyngeal carcinoma. Curr Treat Options Oncol. 2013;14:475–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liao Q, Zeng Z, Guo X, Li X, Wei F, et al. LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation. Oncogene. 2014;33:2098–109.

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Liao Q, Wei F, Li X, Zhang W, et al. LPLUNC1 inhibits nasopharyngeal carcinoma cell growth via down-regulation of the MAP kinase and cyclin D1/E2F pathways. PLoS One. 2013;8, e62869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zeng Z, Zhou Y, Xiong W, Luo X, Zhang W, et al. Analysis of gene expression identifies candidate molecular markers in nasopharyngeal carcinoma using microdissection and cDNA microarray. J Cancer Res Clin Oncol. 2007;133:71–81.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, et al. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol. 2007;38:120–33.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang W, Fan S, Zou G, Shi L, Zeng Z, et al. Lactotransferrin could be a novel independent molecular prognosticator of nasopharyngeal carcinoma. Tumour Biol. 2015;36:675–83.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W, Zeng Z, Zhou Y, Xiong W, Fan S, et al. Identification of aberrant cell cycle regulation in Epstein-Barr virus-associated nasopharyngeal carcinoma by cDNA microarray and gene set enrichment analysis. Acta Biochim Biophys Sin (Shanghai). 2009;41:414–28.

    Article  CAS  Google Scholar 

  11. Zhang W, Zeng Z, Fan S, Wang J, Yang J, et al. Evaluation of the prognostic value of TGF-beta superfamily type I receptor and TGF-beta type II receptor expression in nasopharyngeal carcinoma using high-throughput tissue microarrays. J Mol Histol. 2012;43:297–306.

    Article  CAS  PubMed  Google Scholar 

  12. Huang HB, Deng M, Zheng Y, Zhou YH, Zhang WL, et al. Innate immune protein lactotransferrin prevents initiation and arrests progression of nasopharyngeal carcinoma. Prog Biochem Biophys. 2013;40:319–24.

    CAS  Google Scholar 

  13. Zeng Z, Fan S, Zhang X, Li S, Zhou M, et al. Epstein-Barr virus-encoded small RNA 1 (EBER-1) could predict good prognosis in nasopharyngeal carcinoma. Clin Transl Oncol. 2015;

  14. Xiong W, Wu X, Starnes S, Johnson SK, Haessler J, et al. An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood. 2008;112:4235–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gong ZJ, Huang HB, Xu K, Liang F, Li XL, et al. Advances in microRNAs and TP53 gene regulatory network. Prog Biochem Biophys. 2012;39:1133–44.

    Article  CAS  Google Scholar 

  16. Li Y, Gordon MW, Xu-Monette ZY, Visco C, Tzankov A, et al. Single nucleotide variation in the TP53 3′ untranslated region in diffuse large B-cell lymphoma treated with rituximab-CHOP: a report from the International DLBCL Rituximab-CHOP Consortium Program. Blood. 2013;121:4529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gong Z, Zhang S, Zeng Z, Wu H, Yang Q, et al. LOC401317, a p53-regulated long non-coding RNA, inhibits cell proliferation and induces apoptosis in the nasopharyngeal carcinoma cell line HNE2. PLoS One. 2014;9, e110674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siomi H, Siomi MC. Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 2010;38:323–32.

    Article  CAS  PubMed  Google Scholar 

  20. Rybak A, Fuchs H, Hadian K, Smirnova L, Wulczyn EA, et al. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nat Cell Biol. 2009;11:1411–20.

    Article  CAS  PubMed  Google Scholar 

  21. Fan YY, Long B, Liu F, Zhou LY, Wang K, et al. Establishment of cardiomyocyte-specific miR-30b transgenic mice and exploring the function of miR-30b. Prog Biochem Biophys. 2014;41:575–82.

    CAS  Google Scholar 

  22. Pan YQ, Pan B, Liu XY, Li RZ, Yue JM. Dicer and its miRNAs are necessary gene and regulatory factors for differentiation and proliferation of vascular smooth muscle cell. Prog Biochem Biophys. 2014;41:1255–64.

    CAS  Google Scholar 

  23. Wu G, Wang D, Huang Y, Han JD. The research progress of microRNAs in aging. Prog Biochem Biophys. 2014;41:273–87.

    CAS  Google Scholar 

  24. Becker LE, Lu Z, Chen W, Xiong W, Kong M, et al. A systematic screen reveals microRNA clusters that significantly regulate four major signaling pathways. PLoS One. 2012;7, e48474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma X, Kumar M, Choudhury SN, Becker Buscaglia LE, Barker JR, et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci U S A. 2011;108:10144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma X, Conklin DJ, Li F, Dai Z, Hua X, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun. 2015;6:7151.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bo H, Gong Z, Zhang W, Li X, Zeng Y, et al. Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma. Oncotarget. 2015;6(24):20404–18.

  28. Gong Z, Zhang S, Zhang W, Huang H, Li Q, et al. Long non-coding RNAs in cancer. Sci China Life Sci. 2012;55:1120–4.

    Article  PubMed  Google Scholar 

  29. Tang K, Wei F, Bo H, Huang HB, Zhang WL, et al. Cloning and functional characterization of a novel long non-coding RNA gene associated with hepatocellular carcinoma. Prog Biochem Biophys. 2014;41:153–62.

    CAS  Google Scholar 

  30. Zhang W, Huang C, Gong Z, Zhao Y, Tang K, et al. Expression of LINC00312, a long intergenic non-coding RNA, is negatively correlated with tumor size but positively correlated with lymph node metastasis in nasopharyngeal carcinoma. J Mol Histol. 2013;44:545–54.

    Article  CAS  PubMed  Google Scholar 

  31. Li YW, Wang YM, Zhang XY, Xue D, Kuang B, et al. Progress of long noncoding RNA HOTAIR in human cancer. Prog Biochem Biophys. 2015;42:228–35.

    CAS  Google Scholar 

  32. Bu D, Luo H, Jiao F, Fang S, Tan C, et al. Evolutionary annotation of conserved long non-coding RNAs in major mammalian species. Sci China Life Sci. 2015;

  33. Li J, Gao C, Wang Y, Ma W, Tu J, et al. A bioinformatics method for predicting long noncoding RNAs associated with vascular disease. Sci China Life Sci. 2014;57:852–7.

    Article  CAS  PubMed  Google Scholar 

  34. Chen YN, Xiong XD. Long noncoding RNA and epigenetic regulation. Prog Biochem Biophys. 2014;41:723–30.

    CAS  Google Scholar 

  35. Cai B, Wu Z, Liao K, Zhang S. Long noncoding RNA HOTAIR can serve as a common molecular marker for lymph node metastasis: a meta-analysis. Tumour Biol. 2014;35:8445–50.

    Article  CAS  PubMed  Google Scholar 

  36. Deng K, Guo X, Wang H, Xia J. The lncRNA-MYC regulatory network in cancer. Tumour Biol. 2014;35:9497–503.

    Article  CAS  PubMed  Google Scholar 

  37. Dong Y, Liang G, Yuan B, Yang C, Gao R, et al. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. 2015;36:1477–86.

    Article  CAS  PubMed  Google Scholar 

  38. Gan L, Xu M, Zhang Y, Zhang X, Guo W. Focusing on long noncoding RNA dysregulation in gastric cancer. Tumour Biol. 2015;36:129–41.

    Article  CAS  PubMed  Google Scholar 

  39. Gao Y, Chen G, Zeng Y, Zeng J, Lin M, et al. Invasion and metastasis-related long noncoding RNA expression profiles in hepatocellular carcinoma. Tumour Biol. 2015;

  40. Guo X, Xia J, Deng K. Long non-coding RNAs: emerging players in gastric cancer. Tumour Biol. 2014;35:10591–600.

    Article  CAS  PubMed  Google Scholar 

  41. Hajjari M, Khoshnevisan A, Shin YK. Molecular function and regulation of long non-coding RNAs: paradigms with potential roles in cancer. Tumour Biol. 2014;35:10645–63.

    Article  CAS  PubMed  Google Scholar 

  42. Slack FJ, Weidhaas JB. MicroRNA in cancer prognosis. N Engl J Med. 2008;359:2720–2.

    Article  CAS  PubMed  Google Scholar 

  43. Zeng Z, Fan S, Zhang X, Li S, Zhou M, et al. Epstein–Barr virus-encoded small RNA 1 (EBER-1) could predict 3 good prognosis in nasopharyngeal carcinoma. Clin Transl Oncol. 2015;

  44. Zeng Z, Bo H, Gong Z, Lian Y, Li X, et al. AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumour Biol. 2015;

  45. Wei F, Li XY, Li XL, Zhang WL, Liao QJ, et al. The effect and mechanism of PLUNC protein family against inflammation and carcinogenesis of nasopharyngeal carcinoma. Prog Biochem Biophys. 2014;41:24–31.

    CAS  Google Scholar 

  46. Li Y, Lu H. Noncoding RNAs: “our turn” to join the p53 network. J Mol Cell Biol. 2014;6:179–80.

    Article  PubMed  Google Scholar 

  47. Gordon MW, Yan F, Zhong X, Mazumder PB, Xu-Monette ZY, et al. Regulation of p53-targeting microRNAs by polycyclic aromatic hydrocarbons: Implications in the etiology of multiple myeloma. Molecular carcinogenesis. 2014;

  48. Kumar M, Lu Z, Takwi AA, Chen W, Callander NS, et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011;30:843–53.

    Article  CAS  PubMed  Google Scholar 

  49. Ma X, Choudhury SN, Hua X, Dai Z, Li Y. Interaction of the oncogenic miR-21 microRNA and the p53 tumor suppressor pathway. Carcinogenesis. 2013;34:1216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takwi A, Li Y. The p53 pathway encounters the microRNA world. Current genomics. 2009;10:194–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 2008;27:4373–9.

    Article  CAS  PubMed  Google Scholar 

  52. Deng Q, Becker L, Ma X, Zhong X, Young K, et al. The dichotomy of p53 regulation by noncoding RNAs. J Mol Cell Biol. 2014;6:198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luo Z, Zhang L, Li Z, Li X, Li G, et al. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Med Genomics. 2012;5:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res. 2006;66:7999–8006.

    Article  CAS  PubMed  Google Scholar 

  55. Yang QQ, Deng YF. Genome-wide analysis of long non-coding RNA in primary nasopharyngeal carcinoma by microarray. Histopathology. 2015;66:1022–30.

    Article  PubMed  Google Scholar 

  56. Zeng Z, Huang H, Huang L, Sun M, Yan Q, et al. Regulation network and expression profiles of Epstein-Barr virus-encoded microRNAs and their potential target host genes in nasopharyngeal carcinomas. Sci China Life Sci. 2014;57:315–26.

    Article  CAS  PubMed  Google Scholar 

  57. Soares MR, Huber J, Rios AF, Ramos ES. Investigation of IGF2/ApaI and H19/RsaI polymorphisms in patients with cutaneous melanoma. Growth Horm IGF Res. 2010;20:295–7.

    Article  CAS  PubMed  Google Scholar 

  58. Huang HB, Liang F, Xiong W, Li XL, Zeng ZY, et al. Bioinformatics accelerates drug repositioning. Prog Biochem Biophys. 2012;39:35–44.

    Article  Google Scholar 

  59. Liu N, Chen NY, Cui RX, Li WF, Li Y, et al. Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol. 2012;13:633–41.

    Article  CAS  PubMed  Google Scholar 

  60. Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A. 2008;105:5874–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen HC, Chen GH, Chen YH, Liao WL, Liu CY, et al. MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer. 2009;100:1002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li T, Chen JX, Fu XP, Yang S, Zhang Z, et al. MicroRNA expression profiling of nasopharyngeal carcinoma. Oncol Rep. 2011;25:1353–63.

    PubMed  Google Scholar 

  63. Lin J, Huo R, Xiao L, Zhu X, Xie J, et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014;66:49–59.

    Article  CAS  PubMed  Google Scholar 

  64. Subramanian M, Francis P, Bilke S, Li XL, Hara T, et al. A mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis. Oncogene. 2015;34:1094–104.

    Article  CAS  PubMed  Google Scholar 

  65. Pan JJ, Zhang SW, Chen CB, Xiao SW, Sun Y, et al. Effect of recombinant adenovirus-p53 combined with radiotherapy on long-term prognosis of advanced nasopharyngeal carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27:799–804.

    Article  Google Scholar 

  66. Song SJ, Pandolfi PP. MiR-22 in tumorigenesis. Cell Cycle. 2014;13:11–2.

    Article  CAS  PubMed  Google Scholar 

  67. Liu XF, Xia YF, Li MZ, Wang HM, He YX, et al. The effect of p21 antisense oligodeoxynucleotides on the radiosensitivity of nasopharyngeal carcinoma cells with normal p53 function. Cell Biol Int. 2006;30:283–7.

    Article  CAS  PubMed  Google Scholar 

  68. Nagai MA, Butugan O, Logullo A, Brentani MM. Expression of growth factors, proto-oncogenes, and p53 in nasopharyngeal angiofibromas. Laryngoscope. 1996;106:190–5.

    Article  CAS  PubMed  Google Scholar 

  69. Poon RY. DNA damage checkpoints in nasopharyngeal carcinoma. Oral Oncol. 2014;50:339–44.

    Article  CAS  PubMed  Google Scholar 

  70. Xie C, Yuan J, Li H, Li M, Zhao G, et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res. 2014;42:D98–103.

    Article  CAS  PubMed  Google Scholar 

  71. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43:621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu C, Chen Z, Fang J, Xu A, Zhang W, et al. H19-derived miR-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumour Biol. 2015;

  74. Ma C, Nong K, Zhu H, Wang W, Huang X, et al. H19 promotes pancreatic cancer metastasis by derepressing let-7’s suppression on its target HMGA2-mediated EMT. Tumour Biol. 2014;35:9163–9.

    Article  CAS  PubMed  Google Scholar 

  75. Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41:4976–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011;146:353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ergun S, Oztuzcu S. Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways. Tumour Biol. 2015;36:3129–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the National Natural Science Foundation of China (81172189, 81272298, 81372907, 81301757, 81472531, 81402009, 81572787, and 81528019) and the Natural Science Foundation of Hunan Province (14JJ1010 and 2015JJ1022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Zeng.

Ethics declarations

Conflicts of interest

None

Additional information

Zhaojian Gong and Qian Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure S1

The expression of p53 was validated in HNE2 cells after transfection with TP53 gene plasmid. Real-time-PCR (a) and western blotting (b) were used to detect the mRNA and protein expression levels of p53 in HNE2 cells after transfection with TP53 gene plasmid, respectively. GAPDH was used as the control. (c) The p53 overexpression plasmid pCMV-p53 and luciferase reporter plasmid containing p53 binding sites used for assaying p53 transcriptional activity, the pp53-TA-luc, were cotransfected into HNE2 cells, and transcriptional activity of p53 from 0–48 h post-transfection was determined by luciferase assays. (GIF 42 kb) (GIF 134 kb)

(TIFF 2451 kb)

Supplemental Figure S2

Networks of TP53-regulated genes in NPC cell line HNE2. Ingenuity Pathway Analysis software (IPA) was used to analyze p53 target genes. Four networks were identified. The main network is shown in Fig. 2c. The intensity of a node color indicates the degree of up-regulation (red). The meanings of the node shapes are indicated in the figure. (GIF 235 kb)

(TIFF 4661 kb)

Supplemental Figure S3

Real-time PCR confirms the differentially expressed mRNA regulated by p53 in HNE2 cells. The expression levels of CDKN1A (a) and MDM2 (b) were confirmed in HNE2. The expression level of mRNAs at 0 h after TP53 transfection was used as the control and was normalized. The data are shown as the means of three independent experiments. *. P < 0.05; **, p < 0.01; ***, p < 0.001. (GIF 42 kb)

(TIFF 601 kb)

Supplemental Figure S4

Construction of the miRNAs and their targeted mRNAs networks regulated by p53 through IPA software. Thirty-three up-regulated miRNAs and 1911 down-regulated mRNAs, as well as 5 down-regulated miRNAs and 296 up-regulated mRNAs, identified in p53 transfected HNE2 cells were entered into IPA software, and 2534 potential miRNAs-mRNAs pairs were identified among these differentially expressed miRNAs and mRNAs through the miRNA target screening strategy. The miRNA-mRNA interaction network was constructed by Cytoscape software. (GIF 349 kb)

(TIFF 5936 kb)

Supplemental Table S1

The differentially expressed miRNAs in HNE2 cells after 0, 12, 24, and 48 h of transfection with the p53 expression vector pCMV-p53. (XLS 25 kb)

Supplemental Table S2

The differentially expressed mRNAs in HNE2 cells after 0, 12, 24, and 48 h of transfection with the p53 expression vector pCMV-p53 . (XLS 333 kb)

Supplemental Table S3

The differentially expressed lncRNAs in HNE2 cells after 0, 12, 24, and 48 h of transfection with the p53 expression vector pCMV-p53. (XLS 197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Z., Yang, Q., Zeng, Z. et al. An integrative transcriptomic analysis reveals p53 regulated miRNA, mRNA, and lncRNA networks in nasopharyngeal carcinoma. Tumor Biol. 37, 3683–3695 (2016). https://doi.org/10.1007/s13277-015-4156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4156-x

Keywords

Navigation