Skip to main content

Advertisement

Log in

The lncRNA-MYC regulatory network in cancer

  • Review
  • Published:
Tumor Biology

Abstract

Long non-coding RNAs (lncRNAs) have been widely studied in recent years, and accumulating evidence identified lncRNAs as crucial regulators of various biological processes, including cell cycle progression, chromatin remodeling, gene transcription, and posttranscriptional processing. In addition, the fact that lncRNAs interact with the MYC gene family in human carcinomas has been discovered. This review summarizes the latest progress on the investigation of lncRNAs and MYC, particularly focusing on the interplay between lncRNAs and MYC in cancer to reveal the significance of lncRNA-MYC network in regulating initiation, development, and metastasis of tumors. Further research and collection of clinical data would provide a better understanding of lncRNA-MYC network in cancer diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi:10.1038/35057062.

    Article  CAS  PubMed  Google Scholar 

  2. Consortium EP, Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. doi:10.1038/nature11247.

    Article  Google Scholar 

  3. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309(5740):1559–63. doi:10.1126/science.1112014.

    Article  CAS  PubMed  Google Scholar 

  4. Liu C, Bai B, Skogerbo G, Cai L, Deng W, Zhang Y, et al. NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res. 2005;33(Database issue):D112–5. doi:10.1093/nar/gki041.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, et al. Characterization of the piRNA complex from rat testes. Science. 2006;313(5785):363–7. doi:10.1126/science.1130164.

    Article  CAS  PubMed  Google Scholar 

  6. Farazi TA, Hoell JI, Morozov P, Tuschl T. MicroRNAs in human cancer. Adv Exp Med Biol. 2013;774:1–20. doi:10.1007/978-94-007-5590-1_1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Adv Genet. 2010;70:87–99. doi:10.1016/B978-0-12-380866-0.60004-6.

    Article  CAS  PubMed  Google Scholar 

  8. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009;27(34):5848–56. doi:10.1200/JCO.2009.24.0317.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41. doi:10.1016/j.cell.2009.02.006.

    Article  CAS  PubMed  Google Scholar 

  10. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9. doi:10.1038/nrg2521.

    Article  CAS  PubMed  Google Scholar 

  11. Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011;12(2):136–49. doi:10.1038/nrg2904.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. LincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300. doi:10.1038/nature10398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61. doi:10.1016/j.tcb.2011.04.001.

    Article  CAS  PubMed  Google Scholar 

  14. Huarte M, Rinn JL. Large non-coding RNAs: missing links in cancer? Hum Mol Genet. 2010;19(R2):R152–61. doi:10.1093/hmg/ddq353.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38. doi:10.1186/1476-4598-10-38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193(3):651–69. doi:10.1534/genetics.112.146704.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, et al. NONCODEv4: exploring the world of long non-coding RNA genes. Nucleic Acids Res. 2014;42(Database issue):D98–103. doi:10.1093/nar/gkt1222.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925–33. doi:10.4161/rna.24604.

    Article  PubMed  Google Scholar 

  19. Novikova IV, Hennelly SP, Sanbonmatsu KY. Sizing up long non-coding RNAs: do lncRNAs have secondary and tertiary structure? Bioarchitecture. 2012;2(6):189–99. doi:10.4161/bioa.22592.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Jeon Y, Sarma K, Lee JT. New and Xisting regulatory mechanisms of X chromosome inactivation. Curr Opin Genet Dev. 2012;22(2):62–71. doi:10.1016/j.gde.2012.02.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF. RNA regulation of epigenetic processes. BioEssays : News Rev Mol Cell Dev Biol. 2009;31(1):51–9. doi:10.1002/bies.080099.

    Article  CAS  Google Scholar 

  22. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46–58. doi:10.1016/j.cell.2010.09.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Clark MB, Mattick JS. Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 2011;22(4):366–76. doi:10.1016/j.semcdb.2011.01.001.

    Article  CAS  PubMed  Google Scholar 

  24. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14. doi:10.1016/j.molcel.2011.08.018.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69. doi:10.1016/j.cell.2011.09.028.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38. doi:10.1016/j.molcel.2010.08.011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hung T, Chang HY. Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol. 2010;7(5):582–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lee JT. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev. 2009;23(16):1831–42. doi:10.1101/gad.1811209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics. 2011;6(5):539–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lu L, Zhu G, Zhang C, Deng Q, Katsaros D, Mayne ST, et al. Association of large noncoding RNA HOTAIR expression and its downstream intergenic CpG island methylation with survival in breast cancer. Breast Cancer Res Treat. 2012;136(3):875–83. doi:10.1007/s10549-012-2314-z.

    Article  CAS  PubMed  Google Scholar 

  31. Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012;72(5):1126–36. doi:10.1158/0008-5472.CAN-11-1803.

    Article  CAS  PubMed  Google Scholar 

  32. Ishibashi M, Kogo R, Shibata K, Sawada G, Takahashi Y, Kurashige J, et al. Clinical significance of the expression of long non-coding RNA HOTAIR in primary hepatocellular carcinoma. Oncol Rep. 2013;29(3):946–50. doi:10.3892/or.2012.2219.

    CAS  PubMed  Google Scholar 

  33. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71(20):6320–6. doi:10.1158/0008-5472.CAN-11-1021.

    Article  CAS  PubMed  Google Scholar 

  34. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. doi:10.1038/nature08975.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41. doi:10.1038/sj.onc.1206928.

    Article  PubMed  Google Scholar 

  36. Schmidt LH, Spieker T, Koschmieder S, Schaffers S, Humberg J, Jungen D, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thoracic Oncol : Off Publ Int Assoc Study Lung Cancer. 2011;6(12):1984–92. doi:10.1097/JTO.0b013e3182307eac.

    Article  Google Scholar 

  37. Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene. 2007;26(6):851–8. doi:10.1038/sj.onc.1209846.

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Feng T, Lian Y, Zhang G, Garen A, Song X. Role of human noncoding RNAs in the control of tumorigenesis. Proc Natl Acad Sci U S A. 2009;106(31):12956–61. doi:10.1073/pnas.0906005106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88(11):5119–26. doi:10.1210/jc.2003-030222.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, et al. Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 2007;282(34):24731–42. doi:10.1074/jbc.M702029200.

    Article  CAS  PubMed  Google Scholar 

  41. Wu H, Zheng J, Deng J, Hu M, You Y, Li N, et al. A genetic polymorphism in lincRNA-uc003opf.1 is associated with susceptibility to esophageal squamous cell carcinoma in Chinese populations. Carcinogenesis. 2013;34(12):2908–17.

    Article  CAS  PubMed  Google Scholar 

  42. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7. doi:10.1038/nature07672.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 2012;488(7409):111–5. doi:10.1038/nature11362.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A. 2009;106(28):11667–72. doi:10.1073/pnas.0904715106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Du Y, Kong G, You X, Zhang S, Zhang T, Gao Y, et al. Elevation of highly up-regulated in liver cancer (HULC) by hepatitis B virus X protein promotes hepatoma cell proliferation via down-regulating p18. J Biol Chem. 2012;287(31):26302–11. doi:10.1074/jbc.M112.342113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9. doi:10.1158/0008-5472.CAN-12-2850.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910. doi:10.1016/j.biocel.2013.05.030.

    Article  CAS  PubMed  Google Scholar 

  48. Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12(11):847–65. doi:10.1038/nrd4140.

    Article  CAS  PubMed  Google Scholar 

  49. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982;79(24):7837–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Shou Y, Martelli ML, Gabrea A, Qi Y, Brents LA, Roschke A, et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci U S A. 2000;97(1):228–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18(19):3004–16. doi:10.1038/sj.onc.1202746.

    Article  CAS  PubMed  Google Scholar 

  52. Schwab M. MYCN in neuronal tumours. Cancer Lett. 2004;204(2):179–87. doi:10.1016/S0304-3835(03)00454-3.

    Article  CAS  PubMed  Google Scholar 

  53. Wu R, Lin L, Beer DG, Ellenson LH, Lamb BJ, Rouillard JM, et al. Amplification and overexpression of the L-MYC proto-oncogene in ovarian carcinomas. Am J Pathol. 2003;162(5):1603–10. doi:10.1016/S0002-9440(10)64294-0.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Luscher B. Function and regulation of the transcription factors of the Myc/Max/Mad network. Gene. 2001;277(1–2):1–14.

    Article  CAS  PubMed  Google Scholar 

  55. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991;251(4998):1211–7.

    Article  CAS  PubMed  Google Scholar 

  56. Blackwood EM, Kretzner L, Eisenman RN. Myc and Max function as a nucleoprotein complex. Current Opin Genet Dev. 1992;2(2):227–35.

    Article  CAS  Google Scholar 

  57. Torres R, Schreiber-Agus N, Morgenbesser SD, DePinho RA. Myc and Max: a putative transcriptional complex in search of a cellular target. Curr Opin Cell Biol. 1992;4(3):468–74.

    Article  CAS  PubMed  Google Scholar 

  58. Park J, Kunjibettu S, McMahon SB, Cole MD. The ATM-related domain of TRRAP is required for histone acetyltransferase recruitment and Myc-dependent oncogenesis. Genes Dev. 2001;15(13):1619–24. doi:10.1101/gad.900101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell. 1998;94(3):363–74.

    Article  CAS  PubMed  Google Scholar 

  60. Nilsson JA, Cleveland JL. Myc pathways provoking cell suicide and cancer. Oncogene. 2003;22(56):9007–21. doi:10.1038/sj.onc.1207261.

    Article  CAS  PubMed  Google Scholar 

  61. Mai S, Mushinski JF. c-Myc-induced genomic instability. J Environ Pathol Toxicol Oncol. 2003;22(3):179–99.

    Article  CAS  PubMed  Google Scholar 

  62. Secombe J, Pierce SB, Eisenman RN. Myc: a weapon of mass destruction. Cell. 2004;117(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  63. Ponzielli R, Katz S, Barsyte-Lovejoy D, Penn LZ. Cancer therapeutics: targeting the dark side of Myc. Eur J Cancer. 2005;41(16):2485–501. doi:10.1016/j.ejca.2005.08.017.

    Article  CAS  PubMed  Google Scholar 

  64. Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, et al. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007;448(7152):445–51. doi:10.1038/nature05953.

    Article  CAS  PubMed  Google Scholar 

  65. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40(1):43–50. doi:10.1038/ng.2007.30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435(7043):839–43. doi:10.1038/nature03677.

    Article  PubMed  Google Scholar 

  67. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32. doi:10.1038/35047554.

    Article  CAS  PubMed  Google Scholar 

  68. Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumour-suppressor activity of H19 RNA. Nature. 1993;365(6448):764–7. doi:10.1038/365764a0.

    Article  CAS  PubMed  Google Scholar 

  69. Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, et al. The H19 non-coding RNA is essential for human tumor growth. PLoS One. 2007;2(9):e845. doi:10.1371/journal.pone.0000845.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Ariel I, Lustig O, Schneider T, Pizov G, Sappir M, De-Groot N, et al. The imprinted H19 gene as a tumor marker in bladder carcinoma. Urology. 1995;45(2):335–8.

    Article  CAS  PubMed  Google Scholar 

  71. Barsyte-Lovejoy D, Lau SK, Boutros PC, Khosravi F, Jurisica I, Andrulis IL, et al. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res. 2006;66(10):5330–7. doi:10.1158/0008-5472.CAN-06-0037.

    Article  CAS  PubMed  Google Scholar 

  72. Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, Halle D, Grinbaum R, Roistacher M, et al. Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer J Int du Cancer. 2012;130(7):1598–606. doi:10.1002/ijc.26170.

    Article  CAS  Google Scholar 

  73. Yang F, Xue X, Bi J, Zheng L, Zhi K, Gu Y, et al. Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol. 2013;139(3):437–45. doi:10.1007/s00432-012-1324-x.

    Article  CAS  PubMed  Google Scholar 

  74. Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, et al. Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res. 2014. doi:10.1038/cr.2014.35.

    Google Scholar 

  75. Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013;23(9):1446–61. doi:10.1101/gr.152942.112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Yang F, Xue X, Zheng L, Bi J, Zhou Y, Zhi K, et al. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J. 2014;281(3):802–13. doi:10.1111/febs.12625.

    Article  CAS  PubMed  Google Scholar 

  77. Liao LM, Sun XY, Liu AW, Wu JB, Cheng XL, Lin JX, et al. Low expression of long noncoding XLOC_010588 indicates a poor prognosis and promotes proliferation through upregulation of c-Myc in cervical cancer. Gynecol Oncol. 2014. doi:10.1016/j.ygyno.2014.03.555.

    Google Scholar 

  78. Buechner J, Einvik C. N-myc and noncoding RNAs in neuroblastoma. Mol Cancer Res. 2012;10(10):1243–53. doi:10.1158/1541-7786.MCR-12-0244.

    Article  CAS  PubMed  Google Scholar 

  79. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, et al. Ultraconserved elements in the human genome. Science. 2004;304(5675):1321–5. doi:10.1126/science.1098119.

    Article  CAS  PubMed  Google Scholar 

  80. Mestdagh P, Fredlund E, Pattyn F, Rihani A, Van Maerken T, Vermeulen J, et al. An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene. 2010;29(24):3583–92. doi:10.1038/onc.2010.106.

    Article  CAS  PubMed  Google Scholar 

  81. Atmadibrata B, Liu PY, Sokolowski N, Zhang L, Wong M, Tee AE, et al. The novel long noncoding RNA linc00467 promotes cell survival but is down-regulated by N-Myc. PLoS ONE. 2014;9(2):e88112. doi:10.1371/journal.pone.0088112.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Tee AE, Ling D, Nelson C, Atmadibrata B, Dinger ME, Xu N et al. The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget. 2014;5(7):1793–804.

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazeng Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, K., Guo, X., Wang, H. et al. The lncRNA-MYC regulatory network in cancer. Tumor Biol. 35, 9497–9503 (2014). https://doi.org/10.1007/s13277-014-2511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2511-y

Keywords

Navigation