Skip to main content

Advertisement

Log in

MiR-371-373 cluster acts as a tumor-suppressor-miR and promotes cell cycle arrest in unrestricted somatic stem cells

  • Research Article
  • Published:
Tumor Biology

Abstract

Recent advances in small RNA research have implicated microRNAs (miRNAs) as important regulators of proliferation and development. The miR-371-373 cluster is prominently expressed in human embryonic stem cells (ESCs) and rapidly decreases after cell differentiation. MiR-371-373 cluster was investigated as one of the key factors of stem cell maintenance and pluripotency in unrestricted somatic stem cells (USSCs) using a lentivirus system. Gene expression showed a dual effect on proliferation, which revealed a transient cell cycle progression and consequent repression in pluripotency factors and cell cycle genes. Cell proliferation analysis with CFU, MTT, and DNA content assays further confirmed the dual effect of cluster after prolonged exposure. Analyzing the course of action, it seems that miR-371-373 cluster acts as an onco/tumor suppressor-miR. MiR371-373 cluster acts by modulating the function of these factors and limiting the excessive cell cycle propagation upon oncogenic stimuli to protect cells from replicative stress, but also activate CDK inhibitors and transcriptional repressors of the retinoblastoma family to cause cell cycle arrest. In contrast to the previous studies, we believe that miR-371-373 cluster functions as a self-renewal miRNA to induce and maintain the pluripotent state but also to potentially inhibit dysregulated proliferation through cell cycle arrest. It seems that miR-371-373 cluster presents with a dual effect in this cellular context which may possess different actions in various cells. This not only expands the basic knowledge of the cluster but may offer a great chance for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alvarez-Garcia I, Miska EA. Microrna functions in animal development and human disease. Development. 2005;132:4653–62.

    Article  CAS  PubMed  Google Scholar 

  2. Bushati N, Cohen SM. Microrna functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  3. Mobarra N, Shafiee A, Rad SM, Tasharrofi N, Soufi-Zomorod M, Hafizi M, Movahed M, Kouhkan F, Soleimani M. Overexpression of microrna-16 declines cellular growth, proliferation and induces apoptosis in human breast cancer cells. In Vitro Cell Dev Biol Anim. 2015

  4. Gangaraju VK, Lin H. Micrornas: Key regulators of stem cells. Nat Rev Mol Cell Biol. 2009;10:116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Keys DN, Au‐Young JK, Chen C. Micrornas in embryonic stem cells. J Cell Physiol. 2009;218:251–5.

    Article  CAS  PubMed  Google Scholar 

  6. Rad SMAH, Bavarsad MS, Arefian E, Jaseb K, Shahjahani M, Saki N. The role of micrornas in stemness of cancer stem cells. Oncol Rev. 2013;7:e8.

    Article  Google Scholar 

  7. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, et al. Human embryonic stem cells express a unique set of micrornas. Dev Biol. 2004;270:488–98.

    Article  CAS  PubMed  Google Scholar 

  8. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific micrornas. Dev Cell. 2003;5:351–8.

    Article  CAS  PubMed  Google Scholar 

  9. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microrna expression atlas based on small rna library sequencing. Cell. 2007;129:1401–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Subramanyam D, Lamouille S, Judson RL, Liu JY, Bucay N, Derynck R, et al. Multiple targets of mir-302 and mir-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29:443–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, et al. A genetic screen implicates mirna-372 and mirna-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol. 2007;604:17–46.

    Article  PubMed  Google Scholar 

  12. Zovoilis A, Nolte J, Drusenheimer N, Zechner U, Hada H, Guan K, et al. Multipotent adult germline stem cells and embryonic stem cells have similar microrna profiles. Mol Hum Reprod. 2008;14:521–9.

    Article  CAS  PubMed  Google Scholar 

  13. Blakaj A, Lin H. Piecing together the mosaic of early mammalian development through micrornas. J Biol Chem. 2008;283:9505–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, et al. Connecting microrna genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008;134:521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Medeiros LA. The role of mir-290-295 in murine embryonic and germ cell development, Massachusetts Institute of Technology. 2011

  16. Medeiros LA, Dennis LM, Gill ME, Houbaviy H, Markoulaki S, Fu D, et al. Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc Natl Acad Sci U S A. 2011;108:14163–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 18 Rad SM, Bamdad T, Sadeghizadeh M, Arefian E, Lotfinia M, Ghanipour M. Transcription factor decoy against stem cells master regulators, nanog and oct-4: A possible approach for differentiation therapy. Tumour Biol. 2014

  18. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. Dgcr8 is essential for microrna biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet. 2007;39:380–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benetti R, Gonzalo S, Jaco I, Muñoz P, Gonzalez S, Schoeftner S, et al. A mammalian microrna cluster controls DNA methylation and telomere recombination via rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol. 2008;15:268–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, et al. Micrornas control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol. 2008;15:259–67.

    Article  CAS  PubMed  Google Scholar 

  21. Judson RL, Babiarz JE, Venere M, Blelloch R. Embryonic stem cell-specific micrornas promote induced pluripotency. Nat Biotechnol. 2009;27:459–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seyed Mohammad Ali Hosseini R, Lida L, Farid K, Ehsan A. Running the differentiation program by transcription factor decoys in stem cells. SFP. 2015;1.

  23. Wilson KD, Venkatasubrahmanyam S, Jia F, Sun N, Butte AJ, Wu JC. Microrna profiling of human-induced pluripotent stem cells. Stem Cells Dev. 2009;18:749–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200:123–35.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Greschat S, Schira J, Küry P, Rosenbaum C, de Souza Silva MA, Kögler G, et al. Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem Cells Dev. 2008;17:221–32.

    Article  CAS  PubMed  Google Scholar 

  26. Seyedjafari E, Soleimani M, Ghaemi N, Sarbolouki MN. Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. J Mater Sci Mater Med. 2011;22:165–74.

    Article  CAS  PubMed  Google Scholar 

  27. Shafiee A, Seyedjafari E, Soleimani M, Ahmadbeigi N, Dinarvand P, Ghaemi N. A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol Lett. 2011;33:1257–64.

    Article  CAS  PubMed  Google Scholar 

  28. Hashemi SM, Soleimani M, Zargarian SS, Haddadi-Asl V, Ahmadbeigi N, Soudi S, et al. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly (ε-caprolactone) nanofiber scaffolds. Cells Tissues Organs. 2008;190:135–49.

    Article  PubMed  Google Scholar 

  29. Sensken S, Waclawczyk S, Knaupp A, Trapp T, Enczmann J, Wernet P, et al. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway. Cytotherapy. 2007;9:362–78.

    Article  CAS  PubMed  Google Scholar 

  30. Fallah P, Amirizadeh N, Poopak B, Toogeh G, Arefian E, Kohram F, Hosseini Rad SM, Kohram M, Teimori Naghadeh H, Soleimani M. Expression pattern of key micrornas in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Int J Lab Hematol. 2015

  31. Adegani FJ, Langroudi L, Arefian E, Shafiee A, Dinarvand P, Soleimani M. A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Mol Biol Rep. 2013;40:3693–703.

    Article  CAS  PubMed  Google Scholar 

  32. Castilla-Llorente V, Nicastro G, Ramos A. Biogenesis and turnover of small rnas: Terminal loop-mediated regulation of mirna biogenesis: Selectivity and mechanisms. Biochem Soc Trans. 2013;41:861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bar M, Wyman SK, Fritz BR, Qi J, Garg KS, Parkin RK, et al. Microrna discovery and profiling in human embryonic stem cells by deep sequencing of small rna libraries. Stem Cells. 2008;26:2496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi J, Yu J-Y, Shcherbata HR, Mathieu J, Wang AJ, Seal S, et al. Micrornas regulate human embryonic stem cell division. Cell Cycle (Georgetown, Tex). 2009;8:3729.

    Article  CAS  Google Scholar 

  35. Pfaff N, Moritz T, Thum T, Cantz T. Mirnas involved in the generation, maintenance, and differentiation of pluripotent cells. J Mol Med. 2012;90:747–52.

    Article  CAS  PubMed  Google Scholar 

  36. Dennis LM. Micrornas in early embryonic development: Dissecting the role of mir-290 through mir-295 in the mouse. Massachusetts Institute of Technology. 2008.

  37. Kim H, Lee G, Ganat Y, Papapetrou EP, Lipchina I, Socci ND, et al. Mir-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell. 2011;8:695–706.

    Article  CAS  PubMed  Google Scholar 

  38. Langroudi L, Forouzandeh M, Soleimani M, Atashi A, Golestaneh AF. Induction of differentiation by down-regulation of nanog and rex-1 in cord blood derived unrestricted somatic stem cells. Mol Biol Rep. 2013;40:4429–37.

    Article  CAS  PubMed  Google Scholar 

  39. Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev. 2009;23:2134–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, et al. Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature. 2009;460:1132–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN. Myc‐regulated micrornas attenuate embryonic stem cell differentiation. EMBO J. 2009;28:3157–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Melton C, Judson RL, Blelloch R. Opposing microrna families regulate self-renewal in mouse embryonic stem cells. Nature. 2010;463:621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Newman MA, Thomson JM, Hammond SM. Lin-28 interaction with the let-7 precursor loop mediates regulated microrna processing. RNA. 2008;14:1539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. Impaired microrna processing enhances cellular transformation and tumorigenesis. Nat Genet. 2007;39:673–7.

    Article  CAS  PubMed  Google Scholar 

  45. Hanina SA, Mifsud W, Down TA, Hayashi K, O'Carroll D, Lao K, et al. Genome-wide identification of targets and function of individual micrornas in mouse embryonic stem cells. PLoS Genet. 2010;6:e1001163.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chang T-C, Yu D, Lee Y-S, Wentzel EA, Arking DE, West KM, et al. Widespread microrna repression by myc contributes to tumorigenesis. Nat Genet. 2007;40:43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bueno MJ, Malumbres M. Micrornas and the cell cycle. Biochim Biophys Acta. 1812;2011:592–601.

    Google Scholar 

  48. Pelengaris S, Khan M, Evan G. C-myc: More than just a matter of life and death. Nat Rev Cancer. 2002;2:764–76.

    Article  CAS  PubMed  Google Scholar 

  49. Infante A, Laresgoiti U, Fernández-Rueda J, Fullaondo A, Galán J, Díaz-Uriarte R, et al. E2f2 represses cell cycle regulators to maintain quiescence. Cell Cycle. 2008;7:3915–27.

    Article  CAS  PubMed  Google Scholar 

  50. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, et al. E2f integrates cell cycle progression with DNA repair, replication, and g2/m checkpoints. Genes Dev. 2002;16:245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lafferty-Whyte K, Cairney CJ, Jamieson NB, Oien KA, Keith WN. Pathway analysis of senescence-associated mirna targets reveals common processes to different senescence induction mechanisms. Biochim Biophys Acta (BBA)-Mol Basis Dis. 2009;1792:341–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was fully supported by funding from Stem Cell Technology Research Center, Tehran, Iran.

Conflicts of interest

Authors disclose any commercial associations that might create a conflict of interest in connection with submitted manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Additional information

Lida Langroudi and Fatemeh Jamshidi-Adegani contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 49 kb)

Supplementary Table 2

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langroudi, L., Jamshidi-Adegani, F., Shafiee, A. et al. MiR-371-373 cluster acts as a tumor-suppressor-miR and promotes cell cycle arrest in unrestricted somatic stem cells. Tumor Biol. 36, 7765–7774 (2015). https://doi.org/10.1007/s13277-015-3519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3519-7

Keywords

Navigation