Skip to main content
Log in

A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The self-renewal and differentiation status of a stem cell is very important in the applications concerning regenerative medicine. Proliferation capacity, differentiation potentials and epigenetic properties of stem cells differ between sources. Studies have shown the high potentials of stem cells in iPS reprogramming. To examine this; we have compared the stem-ness and differential potential of four adult stem cells from common sources. We show a correlation between pluripotency and differentiation status of each stem cell with available data on the reprogramming efficiency. Four human adult stem cells including, adipose tissue-mesenchymal stem cells (AT-MSC), bone marrow mesenchymal stem cells (BM-MSCs), nasal septum derived multipotent progenitors (NSP) and umbilical cord blood stem cells (USSCs) were isolated and characterized. The self- renewal and differentiation potentials of each stem cell were assessed. Stem-ness transcription factors and the propagation potentials of all cells were analyzed. Furthermore the differentiation potentials were evaluated using treatment with induction factors and specific MicroRNA profile. Real-time PCR results showed that our stem cells express innate differentiation factors, miR145 and Let7g, which regulate the stem-ness and also the reprogramming potentials of each stem cell. To complete our view, we compared the propagation and differentiation potentials by correlating the stem-ness gene expression with differentiation MicroRNAs, also the direct effect of these factors on reprogramming. Our results suggest that the potentials of adipose tissue stem cells for GMP (Good Manufacturing Practice) compliant starting material are adequate for clinical applications. Our results indicate a low risk potential for AT-MSCs as starting material for iPS production. Although let7g and mir145 are well known for their differentiation promoting effects, but function more of a fine tuning system between self-renewal and differentiation status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen YC, Tsai KL, Hung CW, Ding DC, duChen LH, Chang YL et al (2011) Induced pluripotent stem cells and regenerative medicine. J Clin Gerontol Geriatrics 2(1):1–6

    Article  Google Scholar 

  2. Caulfield T, Scott C, Hyun I, Lovell-Badge R, Kato K, Zarzeczny A (2009) Stem cell research policy and iPS cells. Nat Methods 7(1):28–33

    Article  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  5. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917

    Article  PubMed  CAS  Google Scholar 

  6. Narsinh KH, Wu JC (2010) Gene correction in human embryonic and induced pluripotent stem cells: promises and challenges ahead. Molecular therapy: the journal of the American Society of Gene Therapy 18(6):1061

    Article  CAS  Google Scholar 

  7. Sun N, Longaker MT, Wu JC (2010) Human iPS cell-based therapy: considerations before clinical applications. Cell cycle (Georgetown, Tex) 9(5):880

    Article  CAS  Google Scholar 

  8. Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W et al (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284(26):17634

    Article  PubMed  CAS  Google Scholar 

  9. Chang MY, Kim D, Kim CH, Kang HC, Yang E, Moon JI et al (2010) Direct reprogramming of rat neural precursor cells and fibroblasts into pluripotent stem cells. PLoS ONE 5:e9838

    Article  PubMed  Google Scholar 

  10. Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C et al (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1(1):46

    Article  PubMed  CAS  Google Scholar 

  11. Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ et al (2010) Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proc Natl Acad Sci 107(8):3558

    Article  PubMed  CAS  Google Scholar 

  12. Trond Aasen AR, Maria JB, Elena Garreta AC, Federico Gonzalez RV (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284

    Article  PubMed  Google Scholar 

  13. Kim JB, Greber B, Araúzo-Bravo MJ, Meyer J, Park KI, Zaehres H et al (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461(7264):649–653

    Article  PubMed  CAS  Google Scholar 

  14. Liu H, Ye Z, Kim Y, Sharkis S, Jang YY (2010) Generation of endoderm derived human induced pluripotent stem cells from primary hepatocytes. Hepatology 51(5):1810–1819

    Article  PubMed  CAS  Google Scholar 

  15. Ruiz S, Brennand K, Panopoulos AD, Herrerías A, Gage FH, Izpisua-Belmonte JC et al (2010) High-efficient generation of induced pluripotent stem cells from human astrocytes. PLoS ONE 5(12):e15526

    Article  PubMed  Google Scholar 

  16. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699

    Article  PubMed  CAS  Google Scholar 

  17. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41(9):968–976

    Article  PubMed  CAS  Google Scholar 

  18. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    Article  PubMed  CAS  Google Scholar 

  19. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    Article  PubMed  CAS  Google Scholar 

  20. Zaehres H, Kogler G, Arauzo-Bravo MJ, Bleidissel M, Santourlidis S, Weinhold S et al (2010) Induction of pluripotency in human cord blood unrestricted somatic stem cells. Exp Hematol 38(9):809–818

    Article  PubMed  CAS  Google Scholar 

  21. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230

    Article  PubMed  CAS  Google Scholar 

  22. Peter M (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell cycle (Georgetown, Tex) 8(6):843

    Article  CAS  Google Scholar 

  23. Xu N, Papagiannakopoulos T, Pan G, Thomson J, Kosik K (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658

    Article  PubMed  CAS  Google Scholar 

  24. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al (2007) Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123

    Article  PubMed  CAS  Google Scholar 

  25. Carrington J, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301(5631):336

    Article  PubMed  CAS  Google Scholar 

  26. Reinhart B, Slack F, Basson M, Pasquinelli A, Bettinger J, Rougvie A et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  PubMed  CAS  Google Scholar 

  27. Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320(5872):97

    Article  PubMed  CAS  Google Scholar 

  28. Newman MA, Hammond SM (2010) Lin-28: an early embryonic sentinel that blocks Let-7 biogenesis. Int j Biochem Cell Biol 42(8):1330–1333

    Article  PubMed  CAS  Google Scholar 

  29. Marson A, Levine S, Cole M, Frampton G, Brambrink T, Johnstone S et al (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134(3):521–533

    Article  PubMed  CAS  Google Scholar 

  30. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853

    Article  PubMed  CAS  Google Scholar 

  31. Michael MZ, O’Connor SM, Van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1:882–891

    PubMed  CAS  Google Scholar 

  32. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    Article  PubMed  CAS  Google Scholar 

  33. Cordes K, Sheehy N, White M, Berry E, Morton S, Muth A et al (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710

    PubMed  CAS  Google Scholar 

  34. Hatfield S, Ruohola-Baker H (2008) MicroRNA and stem cell function. Cell Tissue Res 331(1):57–66

    Article  PubMed  CAS  Google Scholar 

  35. Adegani FJ, Langroudi L, Arefian E, Soleimani M (2011) Differentiation microRNAs affect stemness status of USSCs. Iranian Red Crescent Medical Journal 13(10):726

    Google Scholar 

  36. Watt FM, Driskell RR (2010) The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B 365(1537):155

    Article  Google Scholar 

  37. González F, Boué S, Belmonte JCI (2011) Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12:231–242

    Article  PubMed  Google Scholar 

  38. Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135

    Article  PubMed  Google Scholar 

  39. Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  40. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176(1):57–66

    Article  PubMed  CAS  Google Scholar 

  41. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U et al (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33(11):1402–1416

    Article  PubMed  CAS  Google Scholar 

  42. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R et al (1989) Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Investig 84(5):1663–1670

    Article  PubMed  CAS  Google Scholar 

  43. Shafiee A, Kabiri M, Ahmadbeigi N, Yazdani SO, Mojtahed M, Amanpour S et al (2011) Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine. Stem Cells Dev 20(12):2077–2091

    Article  PubMed  CAS  Google Scholar 

  44. Hashemi SM, Soleimani M, Zargarian SS, Haddadi-Asl V, Ahmadbeigi N, Soudi S et al (2009) In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly(ε-caprolactone) nanofiber scaffolds. Cells Tissues Organs 190(3):135–149

    Article  PubMed  CAS  Google Scholar 

  45. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98(9):2615–2625

    Article  PubMed  CAS  Google Scholar 

  46. Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13(1):69–80

    Article  PubMed  CAS  Google Scholar 

  47. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl E, Nitsch R et al (2008) A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat Cell Biol 10(8):987–993

    Article  PubMed  CAS  Google Scholar 

  48. Oda Y, Yoshimura Y, Ohnishi H, Tadokoro M, Katsube Y, Sasao M et al (2010) Induction of pluripotent stem cells from human third molar mesenchymal stromal cells. J Biol Chem 285(38):29270–29278

    Article  PubMed  CAS  Google Scholar 

  49. Kögler G, Sensken S, Wernet P (2006) Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 34(11):1589–1595

    Article  PubMed  Google Scholar 

  50. Kellner S, Kikyo N (2010) Transcriptional regulation of the Oct4 gene, a master gene for pluripotency. Histol Histopathol 25(3):405

    PubMed  CAS  Google Scholar 

  51. Hawkins PG, Morris KV (2010) Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1(3):165–175

    Article  PubMed  Google Scholar 

  52. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128

    Article  PubMed  CAS  Google Scholar 

  53. Vizlin-Hodzic D, Johansson H, Ryme J, Simonsson T, Simonsson S (2011) SAF-A has a role in transcriptional regulation of Oct4 in ES cells through promoter binding. Cellular Reprogramming(Formerly” Cloning and Stem Cells”) 13(1):13–27

    Article  CAS  Google Scholar 

  54. Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki MM, Heninger AK, de Vries I et al (2009) A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell 4(5):403

    Article  PubMed  CAS  Google Scholar 

  55. Saxe JP, Tomilin A, Schöler HR, Plath K, Huang J (2009) Post-translational regulation of Oct4 transcriptional activity. PLoS ONE 4(2):e4467

    Article  PubMed  Google Scholar 

  56. Rodeheffer MS, Birsoy KV, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135(2):240–249

    Article  PubMed  CAS  Google Scholar 

  57. Kleger A, Mahaddalkar P, Katz SF, Lechel A, Ju JY, Loya K et al (2012) Increased reprogramming capacity of mouse liver progenitor cells, compared with differentiated liver cells, requires the BAF complex. Gastroenterology 142(4):907–917

    Article  PubMed  Google Scholar 

  58. Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci 106(37):15720–15725

    Article  PubMed  CAS  Google Scholar 

  59. Kunisato A, Wakatsuki M, Kodama Y, Shinba H, Ishida I, Nagao K (2010) Generation of induced pluripotent stem cells by efficient reprogramming of adult bone marrow cells. Stem Cells and Development 19(2):229–238

    Article  PubMed  CAS  Google Scholar 

  60. Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H et al (2010) Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood 115(8):1549

    Article  PubMed  CAS  Google Scholar 

  61. Shafiee A, Seyedjafari E, Soleimani M, Ahmadbeigi N, Dinarvand P, Ghaemi N (2011) A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue. Biotechnol Lett 33(6):1257–1264

    Article  PubMed  CAS  Google Scholar 

  62. Niibe K, Kawamura Y, Araki D, Morikawa S, Miura K, Suzuki S et al (2011) Purified mesenchymal stem cells are an efficient source for iPS cell induction. PLoS ONE 6(3):e17610. doi:10.1371/journal.pone.0017610

    Article  PubMed  CAS  Google Scholar 

  63. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745

    Article  PubMed  CAS  Google Scholar 

  64. Doi A, Park I-H, Wen B, Murakami P, Aryee MJ, Irizarry R et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353. doi:10.1038/ng.471

    Article  PubMed  CAS  Google Scholar 

  65. Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C et al (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5(1):111–123

    Article  PubMed  CAS  Google Scholar 

  66. Nelson TJ, Martinez-Fernandez A, Yamada S, Mael AA, Terzic A, Ikeda Y (2009) Induced pluripotent reprogramming from promiscuous human stemness-related factors. Clin Trans Sci 2(2):118–126

    Article  CAS  Google Scholar 

  67. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453(7194):544–547

    Article  PubMed  CAS  Google Scholar 

  68. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al (2007) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50

    Article  PubMed  CAS  Google Scholar 

  69. Hanna J, Saha K, Pando B, Van Zon J, Lengner CJ, Creyghton MP et al (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462(7273):595–601

    Article  PubMed  CAS  Google Scholar 

  70. Chivukula R, Mendell J (2009) Abate and switch: miR-145 in stem cell differentiation. Cell 137(4):606–608

    Article  PubMed  CAS  Google Scholar 

  71. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci 106(9):3207

    Article  PubMed  CAS  Google Scholar 

  72. Arora H, Qureshi R, Jin S, Park AK, Park WY (2011) miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1. Exp Mol Med 43(5):298

    Article  PubMed  CAS  Google Scholar 

  73. Ji J, Zhao L, Budhu A, Forgues M, Jia HL, Qin LX et al (2010) Let-7g targets collagen type I [alpha] 2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol 52(5):690–697

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Stem Cell Technology Research Center, Tehran, Iran.

Disclosure

Authors have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Additional information

Fatemeh Jamshidi Adegani, Lida Langroudi contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 113 kb)

Supplementary material 2 (TIFF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adegani, F.J., Langroudi, L., Arefian, E. et al. A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Mol Biol Rep 40, 3693–3703 (2013). https://doi.org/10.1007/s11033-012-2445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2445-7

Keywords

Navigation