Skip to main content

Advertisement

Log in

Knockdown of the AKT3 (PKBγ), PI3KCA, and VEGFR2 genes by RNA interference suppresses glioblastoma multiforme T98G cells invasiveness in vitro

  • Research Article
  • Published:
Tumor Biology

Abstract

Glioblastoma multiforme (GBM) is the most common primary brain malignancy, having a very poor prognosis and is characterized by extensive brain invasion as well as resistance to the therapy. The phosphoinositide 3-kinase (PI3K)/Akt/PTEN signaling pathway is deregulated in GBM. Besides, florid vascularization and aberrantly elevated vascular endothelial growth factor (VEGF) occur very often. The present study was designed to examine the inhibitory effect of AKT3, PI3KCA, and VEGFR2 small interfering RNAs (siRNAs) on GBM cell invasiveness. T98G cells were transfected with AKT3, PI3KCA, and/or VEGFR2 siRNAs. VEGFR2 protein-positive cells were identified by flow cytometry using specific monoclonal anti-VEGFR2 antibodies. Alterations in messenger RNA (mRNA) expression of VEGF, VEGFR2, matrix metalloproteinases (MMPs) (MMP-2, MMP-9, MMP-13, MMP-14), tissue inhibitors of metalloproteinases (TIMPs) (TIMP-1, TIMP-3), c-Fos, c-Jun, hypoxia-inducible factor-1α (HIF-1α), ObRa, and cathepsin D genes were analyzed by qRT-PCR. Cells treated with specific siRNA were also analyzed for invasion using the Matrigel invasion assay. We have found significantly lower mRNA levels of MMPs, cathepsin D, VEGF, VEGFR2, HIF-1α, and c-Fos/c-Jun ratio, as well as significantly higher mRNA level of TIMPs in AKT3 and PI3KCA siRNA transfected cells compared to untransfected cells, while significantly lower mRNA levels of MMPs (MMP-2, MMP-9, MMP-14) and TIMP-1, as well as significantly higher mRNA level of TIMP-3, were shown only in cells transfected with VEGFR2 siRNA. The positive correlation between MMP-13 and ObRa mRNA copy number has been found. Summarizing, transfection of T98G cells with AKT3, PI3KCA, or VEGFR2 siRNAs leads to a significant reduction in cell invasiveness. The siRNA-induced AKT3, PI3KCA, and VEGFR2 mRNA knockdown may offer a novel therapeutic strategy to reduce the invasiveness of GBM cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Weber GL, Parat M-O, Binder ZA, Gallia GL, Riggins GJ. Abrogation of PIK3CA or PIK3R1 reduces proliferation, migration, and invasion in glioblastoma multiforme cells. Oncotarget. 2011;2:833–49.

    PubMed  PubMed Central  Google Scholar 

  2. Del Maestro R. Surgical resection and glioblastoma: molecular profiling and safety. Can J Neurol Sci. 2012;39:561–2.

    PubMed  Google Scholar 

  3. Hafsi S, Pezzino FM, Candido S, Ligresti G, Spandidos DA, Soua Z, et al. Gene alterations in the PI3K/PTEN/AKT pathway as a mechanism of drug-resistance (review). Int J Oncol. 2012;40:639–44.

    CAS  PubMed  Google Scholar 

  4. Burris HA. Overcoming acquired resistance to anticancer therapy: focus on the PI3K/AKT/mTOR pathway. Cancer Chemother Pharmacol. 2013;71:829–42.

    CAS  PubMed  Google Scholar 

  5. Lefranc F, Brotchi J, Kiss R. Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis. J Clin Oncol. 2005;23:2411–22.

    CAS  PubMed  Google Scholar 

  6. Mure H, Matsuzaki K, Kitazato KT, Mizobuchi Y, Kuwayama K, Kageji T, et al. Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol. 2010;12:221–32.

    CAS  PubMed  Google Scholar 

  7. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.

    CAS  PubMed  Google Scholar 

  8. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    CAS  PubMed  Google Scholar 

  9. Hartmann C, Bartels G, Gehlhaar C, Holtkamp N, von Deimling A. PIK3CA mutations in glioblastoma multiforme. Acta Neuropathol. 2005;109:639–42.

    CAS  PubMed  Google Scholar 

  10. Zhou X-K, Tang S-S, Yi G, Hou M, Chen J-H, Yang B, et al. RNAi knockdown of PIK3CA preferentially inhibits invasion of mutant PIK3CA cells. World J Gastroenterol. 2011;17:3700–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang B-H, Liu L-Z. Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment. Drug Resist Updat. 2008;11:63–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zitzmann K, Vlotides G, Brand S, Lahm H, Spöttl G, Göke B, et al. Perifosine-mediated Akt inhibition in neuroendocrine tumor cells: role of specific Akt isoforms. Endocr Relat Cancer. 2012;19:423–34.

    CAS  PubMed  Google Scholar 

  13. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55–7.

    CAS  PubMed  Google Scholar 

  14. Zdychová J, Komers R. Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiol Res. 2005;54:1–16.

    PubMed  Google Scholar 

  15. Duronio V. The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J. 2008;415:333–44.

    CAS  PubMed  Google Scholar 

  16. Young CD, Anderson SM. Sugar and fat - that’s where it’s at: metabolic changes in tumors. Breast Cancer Res. 2008;10:202.

    PubMed  PubMed Central  Google Scholar 

  17. Chin YR, Toker A. Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal. 2009;21:470–6.

    CAS  PubMed  Google Scholar 

  18. Matheny RW, Adamo ML. Current perspectives on Akt Akt-ivation and Akt-ions. Exp Biol Med (Maywood). 2009;234:1264–70.

    CAS  Google Scholar 

  19. Knobbe CB, Reifenberger G. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3’-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol. 2003;13:507–18.

    CAS  PubMed  Google Scholar 

  20. Brognard J, Clark AS, Ni Y, Dennis PA. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 2001;61:3986–97.

    CAS  PubMed  Google Scholar 

  21. Krześlak A. Akt kinase: a key regulator of metabolism and progression of tumors. Postepy Hig Med Dosw (Online). 2010;64:490–503.

    Google Scholar 

  22. Mendoza MC, Blenis J. PHLPPing it off: phosphatases get in the Akt. Mol Cell. 2007;25:798–800.

    CAS  PubMed  Google Scholar 

  23. Böhle AS, Kalthoff H. Molecular mechanisms of tumor metastasis and angiogenesis. Langenbecks Arch Surg. 1999;384:133–40.

    PubMed  Google Scholar 

  24. Nakada M, Okada Y, Yamashita J. The role of matrix metalloproteinases in glioma invasion. Front Biosci. 2003;8:e261–9.

    CAS  PubMed  Google Scholar 

  25. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim D, Kim S, Koh H, Yoon SO, Chung AS, Cho KS, et al. Akt/PKB promotes cancer cell invasion via increased motility and metalloproteinase production. FASEB J. 2001;15:1953–62.

    CAS  PubMed  Google Scholar 

  27. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277:225–8.

    CAS  PubMed  Google Scholar 

  28. Nakada M, Kita D, Watanabe T, Hayashi Y, Teng L, Pyko IV, et al. Aberrant signaling pathways in glioma. Cancer (Basel). 2011;3:3242–78.

    CAS  Google Scholar 

  29. Ahima RS, Bjorbaek C, Osei S, Flier JS. Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology. 1999;140:2755–62.

    CAS  PubMed  Google Scholar 

  30. Russo VC, Metaxas S, Kobayashi K, Harris M, Werther GA. Antiapoptotic effects of leptin in human neuroblastoma cells. Endocrinology. 2004;145:4103–12.

    CAS  PubMed  Google Scholar 

  31. Dicou E, Attoub S, Gressens P. Neuroprotective effects of leptin in vivo and in vitro. Neuroreport. 2001;12:3947–51.

    CAS  PubMed  Google Scholar 

  32. Cui H, Cai F, Belsham DD. Leptin signaling in neurotensin neurons involves STAT, MAP kinases ERK1/2, and p38 through c-Fos and ATF1. FASEB J. 2006;20:2654–6.

    CAS  PubMed  Google Scholar 

  33. El Homsi M, Ducroc R, Claustre J, Jourdan G, Gertler A, Estienne M, et al. Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways. Am J Physiol Gastrointest Liver Physiol. 2007;293:G365–73.

    PubMed  Google Scholar 

  34. Wolf G, Hamann A, Han DC, Helmchen U, Thaiss F, Ziyadeh FN, et al. Leptin stimulates proliferation and TGF-beta expression in renal glomerular endothelial cells: potential role in glomerulosclerosis [seecomments]. Kidney Int. 1999;56:860–72.

    CAS  PubMed  Google Scholar 

  35. Sierra-Honigmann MR, Nath AK, Murakami C, García-Cardeña G, Papapetropoulos A, Sessa WC, et al. Biological action of leptin as an angiogenic factor. Science. 1998;281:1683–6.

    CAS  PubMed  Google Scholar 

  36. Uotani S, Bjørbaek C, Tornøe J, Flier JS. Functional properties of leptin receptor isoforms: internalization and degradation of leptin and ligand-induced receptor downregulation. Diabetes. 1999;48:279–86.

    CAS  PubMed  Google Scholar 

  37. Descheemaeker KA, Wyns S, Nelles L, Auwerx J, Ny T, Collen D. Interaction of AP-1-, AP-2-, and Sp1-like proteins with two distinct sites in the upstream regulatory region of the plasminogen activator inhibitor-1 gene mediates the phorbol 12-myristate 13-acetate response. J Biol Chem. 1992;267:15086–91.

    CAS  PubMed  Google Scholar 

  38. Westermarck J, Kähäri VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999;13:781–92.

    CAS  PubMed  Google Scholar 

  39. Berchem G, Glondu M, Gleizes M, Brouillet J-P, Vignon F, Garcia M, et al. Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene. 2002;21:5951–5.

    CAS  PubMed  Google Scholar 

  40. Tews DS. Adhesive and invasive features in gliomas. Pathol Res Pract. 2000;196:701–11.

    CAS  PubMed  Google Scholar 

  41. Szala S, Jarosz M, Smolarczyk R, Cichoń T. ‘Vicious circles’ of glioblastoma tumors: vascularization and invasiveness. Postepy Hig Med Dosw (Online). 2012;66:888–900.

    Google Scholar 

  42. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8:627–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chi AS, Sorensen AG, Jain RK, Batchelor TT. Angiogenesis as a therapeutic target in malignant gliomas. Oncologist. 2009;14:621–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Skinner HD, Zheng JZ, Fang J, Agani F, Jiang B-H. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem. 2004;279:45643–51.

    CAS  PubMed  Google Scholar 

  45. Xia C, Meng Q, Cao Z, Shi X, Jiang B-H. Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. J Cell Physiol. 2006;209:56–66.

    CAS  PubMed  Google Scholar 

  46. Pietsch T, Valter MM, Wolf HK, von Deimling A, Huang HJ, Cavenee WK, et al. Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol. 1997;93:109–17.

    CAS  PubMed  Google Scholar 

  47. Teicher BA, Menon K, Alvarez E, Galbreath E, Shih C, Faul M. Antiangiogenic and antitumor effects of a protein kinase Cbeta inhibitor in human T98G glioblastoma multiforme xenografts. Clin Cancer Res. 2001;7:634–40.

    CAS  PubMed  Google Scholar 

  48. Chan AS, Leung SY, Wong MP, Yuen ST, Cheung N, Fan YW, et al. Expression of vascular endothelial growth factor and its receptors in the anaplastic progression of astrocytoma, oligodendroglioma, and ependymoma. Am J Surg Pathol. 1998;22:816–26.

    CAS  PubMed  Google Scholar 

  49. Shay-Salit A, Shushy M, Wolfovitz E, Yahav H, Breviario F, Dejana E, et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci U S A. 2002;99:9462–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stupack DG, Cheresh DA. Integrins and angiogenesis. Curr Top Dev Biol. 2004;64:207–38.

    CAS  PubMed  Google Scholar 

  51. Stein GH. T98G: an anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J Cell Physiol. 1979;99:43–54.

    CAS  PubMed  Google Scholar 

  52. Price SJ, Whittle IR, Ashkan K, Grundy P, Cruickshank G, UK-HGG Study Group. NICE guidance on the use of carmustine wafers in high grade gliomas: a national study on variation in practice. Br J Neurosurg. 2012;26:331–5.

    PubMed  PubMed Central  Google Scholar 

  53. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004;11:448–57.

    CAS  PubMed  Google Scholar 

  54. Paul-Samojedny M, Suchanek R, Borkowska P, Pudełko A, Owczarek A, et al. Knockdown of AKT3 (PKBγ) and PI3KCA suppresses cell viability and proliferation and induces the apoptosis of glioblastoma multiforme T98G cells. Biomed Res Int. 2014;2014(ID 768181):1–12.

    Google Scholar 

  55. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30:193–204.

    PubMed  Google Scholar 

  56. Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JFM. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 2008;8:187–98.

    CAS  PubMed  Google Scholar 

  57. Jiang B-H, Liu L-Z. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta. 2008;1784:150–8.

    CAS  PubMed  Google Scholar 

  58. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Litherland GJ, Dixon C, Lakey RL, Robson T, Jones D, Young DA, et al. Synergistic collagenase expression and cartilage collagenolysis are phosphatidylinositol 3-kinase/Akt signaling-dependent. J Biol Chem. 2008;283:14221–9.

    CAS  PubMed  Google Scholar 

  60. Pore N, Gupta AK, Cerniglia GJ, Maity A. HIV protease inhibitors decrease VEGF/HIF-1alpha expression and angiogenesis in glioblastoma cells. Neoplasia. 2006;8:889–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000;18:1135–49.

    CAS  PubMed  Google Scholar 

  62. Yeh W-L, Lu D-Y, Lee M-J, Fu W-M. Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia. 2009;57:454–64.

    PubMed  Google Scholar 

  63. Nannuru KC, Futakuchi M, Varney ML, Vincent TM, Marcusson EG, Singh RK. Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res. 2010;70:3494–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fukuda H, Mochizuki S, Abe H, Okano HJ, Hara-Miyauchi C, Okano H, et al. Host-derived MMP-13 exhibits a protective role in lung metastasis of melanoma cells by local endostatin production. Br J Cancer. 2011;105:1615–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu T, Wu Y, Helman JI, Wen Y, Wang C, Li L. CXCR4 promotes oral squamous cell carcinoma migration and invasion through inducing expression of MMP-9 and MMP-13 via the ERK signaling pathway. Mol Cancer Res. 2011;9:161–72.

    CAS  PubMed  Google Scholar 

  66. Kudo Y, Iizuka S, Yoshida M, Tsunematsu T, Kondo T, Subarnbhesaj A, et al. Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J Biol Chem. 2012;287:38716–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang H, Qi M, Li S, Qi T, Mei H, Huang K, et al. microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Mol Cancer Ther. 2012;11:1454–66.

    PubMed  Google Scholar 

  68. Bond M, Fabunmi RP, Baker AH, Newby AC. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett. 1998;435:29–34.

    CAS  PubMed  Google Scholar 

  69. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature. 1999;401:82–5.

    CAS  PubMed  Google Scholar 

  70. Rutka J, Matsuzawa K, Hubbard S, Fukuyama K, Becker L, Stetlerstevenson W, et al. Expression of timp-1, timp-2, 72-kda and 92-kda type-iv collagenase transcripts in human astrocytoma cell-lines - correlation with astrocytoma cell invasiveness. Int J Oncol. 1995;6:877–84.

    CAS  PubMed  Google Scholar 

  71. Pagenstecher A, Wussler EM, Opdenakker G, Volk B, Campbell IL. Distinct expression patterns and levels of enzymatic activity of matrix metalloproteinases and their inhibitors in primary brain tumors. J Neuropathol Exp Neurol. 2001;60:598–612.

    CAS  PubMed  Google Scholar 

  72. Wild-Bode C, Weller M, Wick W. Molecular determinants of glioma cell migration and invasion. J Neurosurg. 2001;94:978–84.

    CAS  PubMed  Google Scholar 

  73. Kachra Z, Beaulieu E, Delbecchi L, Mousseau N, Berthelet F, Moumdjian R, et al. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin Exp Metastasis. 1999;17:555–66.

    CAS  PubMed  Google Scholar 

  74. Deryugina EI, Bourdon MA, Luo GX, Reisfeld RA, Strongin A. Matrix metalloproteinase-2 activation modulates glioma cell migration. J Cell Sci. 1997;110(Pt 19):2473–82.

    CAS  PubMed  Google Scholar 

  75. Forsyth PA, Laing TD, Gibson AW, Rewcastle NB, Brasher P, Sutherland G, et al. High levels of gelatinase-B and active gelatinase-A in metastatic glioblastoma. J Neurooncol. 1998;36:21–9.

    CAS  PubMed  Google Scholar 

  76. Du R, Petritsch C, Lu K, Liu P, Haller A, Ganss R, et al. Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro Oncol. 2008;10:254–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Badiga AV, Chetty C, Kesanakurti D, Are D, Gujrati M, Klopfenstein JD, et al. MMP-2 siRNA inhibits radiation-enhanced invasiveness in glioma cells. PLoS One. 2011;6:e20614.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wick W, Wagner S, Kerkau S, Dichgans J, Tonn JC, Weller M. BCL-2 promotes migration and invasiveness of human glioma cells. FEBS Lett. 1998;440:419–24.

    CAS  PubMed  Google Scholar 

  79. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.

    CAS  PubMed  Google Scholar 

  80. Gomis-Rüth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997;389:77–81.

    PubMed  Google Scholar 

  81. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J Clin Invest. 1999;103:1237–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003;9:407–15.

    CAS  PubMed  Google Scholar 

  83. Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    CAS  PubMed  Google Scholar 

  84. Van Bruggen N, Thibodeaux H, Palmer JT, Lee WP, Fu L, Cairns B, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest. 1999;104:1613–20.

    PubMed  PubMed Central  Google Scholar 

  85. Zhou Y-H, Hu Y, Mayes D, Siegel E, Kim JG, Mathews MS, et al. PAX6 suppression of glioma angiogenesis and the expression of vascular endothelial growth factor A. J Neurooncol. 2010;96:191–200.

    CAS  PubMed  Google Scholar 

  86. Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res. 2006;66:3197–204.

    CAS  PubMed  Google Scholar 

  87. Wiesener MS, Münchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res. 2001;61:5215–22.

    CAS  PubMed  Google Scholar 

  88. Damert A, Machein M, Breier G, Fujita MQ, Hanahan D, Risau W, et al. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res. 1997;57:3860–4.

    CAS  PubMed  Google Scholar 

  89. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 1999;59:5830–5.

    CAS  PubMed  Google Scholar 

  90. Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998;394:485–90.

    CAS  PubMed  Google Scholar 

  91. Jensen RL, Ragel BT, Whang K, Gillespie D. Inhibition of hypoxia inducible factor-1alpha (HIF-1alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J Neurooncol. 2006;78:233–47.

    CAS  PubMed  Google Scholar 

  92. Knizetova P, Ehrmann J, Hlobilkova A, Vancova I, Kalita O, Kolar Z, et al. Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell Cycle. 2008;7:2553–61.

    CAS  PubMed  Google Scholar 

  93. Wang F, Barfield E, Dutta S, Pua T, Fishman DA. VEGFR-2 silencing by small interference RNA (siRNA) suppresses LPA-induced epithelial ovarian cancer (EOC) invasion. Gynecol Oncol. 2009;115:414–23.

    CAS  PubMed  Google Scholar 

  94. Ghosh S, Basu M, Roy SS. ETS-1 protein regulates vascular endothelial growth factor-induced matrix metalloproteinase-9 and matrix metalloproteinase-13 expression in human ovarian carcinoma cell line SKOV-3. J Biol Chem. 2012;287:15001–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dias S, Hattori K, Zhu Z, Heissig B, Choy M, Lane W, et al. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. J Clin Invest. 2000;106:511–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997;74:111–22.

    CAS  PubMed  Google Scholar 

  97. Krüger A, Sanchez-Sweatman OH, Martin DC, Fata JE, Ho AT, Orr FW, et al. Host TIMP-1 overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. Oncogene. 1998;16:2419–23.

    PubMed  Google Scholar 

  98. Ahonen M, Baker AH, Kähäri VM. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 1998;58:2310–5.

    CAS  PubMed  Google Scholar 

  99. Baker AH, George SJ, Zaltsman AB, Murphy G, Newby AC. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer. 1999;79:1347–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bian J, Wang Y, Smith MR, Kim H, Jacobs C, Jackman J, et al. Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis. 1996;17:1805–11.

    CAS  PubMed  Google Scholar 

  101. Perego C, Vanoni C, Massari S, Raimondi A, Pola S, Cattaneo MG, et al. Invasive behaviour of glioblastoma cell lines is associated with altered organisation of the cadherin-catenin adhesion system. J Cell Sci. 2002;115:3331–40.

    CAS  PubMed  Google Scholar 

  102. Sivaparvathi M, Sawaya R, Chintala SK, Go Y, Gokaslan ZL, Rao JS. Expression of cathepsin D during the progression of human gliomas. Neurosci Lett. 1996;208:171–4.

    CAS  PubMed  Google Scholar 

  103. Victor BC, Anbalagan A, Mohamed MM, Sloane BF, Cavallo-Medved D. Inhibition of cathepsin B activity attenuates extracellular matrix degradation and inflammatory breast cancer invasion. Breast Cancer Res. 2011;13:R115.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lombardi G, Burzyn D, Mundiñano J, Berguer P, Bekinschtein P, Costa H, et al. Cathepsin-L influences the expression of extracellular matrix in lymphoid organs and plays a role in the regulation of thymic output and of peripheral T cell number. J Immunol. 2005;174:7022–32.

    CAS  PubMed  Google Scholar 

  105. Handley CJ, Mok MT, Ilic MZ, Adcocks C, Buttle DJ, Robinson HC. Cathepsin D cleaves aggrecan at unique sites within the interglobular domain and chondroitin sulfate attachment regions that are also cleaved when cartilage is maintained at acid pH. Matrix Biol. 2001;20:543–53.

    CAS  PubMed  Google Scholar 

  106. Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF. Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J. 1992;282(Pt 1):273–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grant from Medical University of Silesia. The University had no further role in study design, in the collection, analysis and interpretation of data, in the writing of the report, or in the decision to submit the paper for publication.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Paul-Samojedny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul-Samojedny, M., Pudełko, A., Suchanek-Raif, R. et al. Knockdown of the AKT3 (PKBγ), PI3KCA, and VEGFR2 genes by RNA interference suppresses glioblastoma multiforme T98G cells invasiveness in vitro. Tumor Biol. 36, 3263–3277 (2015). https://doi.org/10.1007/s13277-014-2955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2955-0

Keywords

Navigation