Skip to main content

Advertisement

Log in

LncRNAs as key players in the MYC pathways

  • Review Article
  • Published:
Genome Instability & Disease Aims and scope Submit manuscript

Abstract

Recent advancements in genomic and computational technologies have identified numerous untranslated noncoding transcripts including long noncoding RNAs (lncRNAs) in the human genome. Subsequently, the abundance and functional diversity of lncRNAs have been characterized in cellular and pathological pathways of various diseases and cancer. The transcription factor MYC is one of the most pivotal oncogenes, and the oncogenic pathways of MYC have been thought to be competently elucidated. However, recent studies implicating lncRNAs in the MYC pathways show that our research endeavors and knowledge to this day do not thoroughly elaborate the MYC pathways in cancer. It has been shown in recent studies that lncRNAs employ novel mechanisms to tune MYC activity and orchestrate MYC pathways. Furthermore, a number of lncRNAs that have not been dissected have been profiled and identified in the oncogenic MYC pathways. Thus, the research focusing on lncRNAs provides novel biological knowledge of the MYC pathways and will eventually lead to new potential biomarkers and therapeutic targets in MYC-driven cancers. This review discusses the various functional mechanisms of MYC-associated lncRNAs in MYC activity and MYC pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amati, B., Alevizopoulos, K., & Vlach, J. (1998). Myc and the cell cycle. Frontiers in Bioscience, 3, d250–d268.

    Article  CAS  PubMed  Google Scholar 

  • Ariel, I., de Groot, N., & Hochberg, A. (2000). Imprinted H19 gene expression in embryogenesis and human cancer: the oncofetal connection. American Journal of Medical Genetics, 91, 46–50.

    Article  CAS  PubMed  Google Scholar 

  • Arima, T., Matsuda, T., Takagi, N., & Wake, N. (1997). Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genetics and Cytogenetics, 93, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, P. R., Wells, A. D., & Li, X. C. (2019). Diversity and emerging roles of enhancer RNA in regulation of gene expression and cell fate. Front Cell Dev Biol, 7, 377.

    Article  PubMed  Google Scholar 

  • Atmadibrata, B., Liu, P. Y., Sokolowski, N., Zhang, L., Wong, M., Tee, A. E., et al. (2014). The novel long noncoding RNA linc00467 promotes cell survival but is down-regulated by N-Myc. PLoS ONE, 9, e88112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Banet, G., Bibi, O., Matouk, I., Ayesh, S., Laster, M., Kimber, K. M., et al. (2000). Characterization of human and mouse H19 regulatory sequences. Molecular Biology Reports, 27, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, S., & Eilers, M. (2006). Control of cell proliferation and growth by Myc proteins. Results and Problems in Cell Differentiation, 42, 329–342.

    Article  CAS  PubMed  Google Scholar 

  • Blackwood, E. M., & Eisenman, R. N. (1991). Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science, 251, 1211–1217.

    Article  CAS  PubMed  Google Scholar 

  • Boissonnas, C. C., Abdalaoui, H. E., Haelewyn, V., Fauque, P., Dupont, J. M., Gut, I., et al. (2010). Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. European Journal of Human Genetics, 18, 73–80.

    Article  PubMed  Google Scholar 

  • Brown, S. D. (1991). XIST and the mapping of the X chromosome inactivation centre. BioEssays, 13, 607–612.

    Article  CAS  PubMed  Google Scholar 

  • Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6, 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 99, 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, L., Zhang, P., Li, J., & Wu, M. (2017). LAST, a c-Myc-inducible long noncoding RNA, cooperates with CNBP to promote CCND1 mRNA stability in human cells. ELIFE, 6, e30433.

    Article  PubMed  PubMed Central  Google Scholar 

  • Castelnuovo, M., Massone, S., Tasso, R., Fiorino, G., Gatti, M., Robello, M., et al. (2010). An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells. The FASEB Journal, 24, 4033–4046.

    Article  CAS  PubMed  Google Scholar 

  • Chang, T. C., Yu, D., Lee, Y. S., Wentzel, E. A., Arking, D. E., West, K. M., et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 40, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., Liu, H., & Qing, G. (2018). Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduction and Targeted Therapy, 3, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, B., Dragomir, M. P., Fabris, L., Bayraktar, R., Knutsen, E., Liu, X., et al. (2020). The long noncoding RNA CCAT2 induces chromosomal instability through BOP1-AURKB signaling. Gastroenterology, 159, 2146–2162.

    Article  CAS  PubMed  Google Scholar 

  • Cobbold, L. C., Spriggs, K. A., Haines, S. J., Dobbyn, H. C., Hayes, C., de Moor, C. H., et al. (2008). Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc family of IRESs. Molecular and Cellular Biology, 28, 40–49.

    Article  CAS  PubMed  Google Scholar 

  • Cocchi, G., Marsico, C., Cosentino, A., Spadoni, C., Rocca, A., De Crescenzo, A., & Riccio, A. (2013). Silver-Russell syndrome due to paternal H19/IGF2 hypomethylation in a twin girl born after in vitro fertilization. American Journal of Medical Genetics Part A, 161A, 2652–2655.

    Article  PubMed  Google Scholar 

  • Colombo, T., Farina, L., Macino, G., & Paci, P. (2015). PVT1: a rising star among oncogenic long noncoding RNAs. BioMed Research International, 2015, 304208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalla-Favera, R., Bregni, M., Erikson, J., Patterson, D., Gallo, R. C., & Croce, C. M. (1982a). Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America, 79, 7824–7827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalla-Favera, R., Gelmann, E. P., Martinotti, S., Franchini, G., Papas, T. S., Gallo, R. C., & Wong-Staal, F. (1982b). Cloning and characterization of different human sequences related to the onc gene (v-myc) of avian myelocytomatosis virus (MC29). Proceedings of the National Academy of Sciences of the United States of America, 79, 6497–6501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang, C. V. (2012). MYC on the path to cancer. Cell, 149, 22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBaun, M. R., Niemitz, E. L., McNeil, D. E., Brandenburg, S. A., Lee, M. P., & Feinberg, A. P. (2002). Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith-Wiedemann syndrome with cancer and birth defects. American Journal of Human Genetics, 70, 604–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinescu, S., Ignat, S., Lazar, A. D., Constantin, C., Neagu, M., & Costache, M. (2019). Epitranscriptomic signatures in lncRNAs and their possible roles in cancer. Genes (Basel), 10, 52.

    Article  Google Scholar 

  • Dong, Y. X., Pang, Z. G., Zhang, J. C., Hu, J. Q., & Wang, L. Y. (2019). Long non-coding RNA GClnc1 promotes progression of colorectal cancer by inhibiting p53 signaling pathway. European Review for Medical and Pharmacological Sciences, 23, 5705–5713.

    PubMed  Google Scholar 

  • Doose, G., Haake, A., Bernhart, S. H., Lopez, C., Duggimpudi, S., Wojciech, F., et al. (2015). MINCR is a MYC-induced lncRNA able to modulate MYC’s transcriptional network in Burkitt lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America, 112, E5261–E5270.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doose, G., Hoffmann, S., & Iaccarino, I. (2016). Reply to Hart et al.: MINCR and MYC: More than expression correlation. Proceedings of the National Academy of Sciences of the United States of America, 113, E498.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle, L. A., Yang, W., Rishi, A. K., Gao, Y., & Ross, D. D. (1996). H19 gene overexpression in atypical multidrug-resistant cells associated with expression of a 95-kilodalton membrane glycoprotein. Cancer Research, 56, 2904–2907.

    CAS  PubMed  Google Scholar 

  • Duesberg, P. H., Bister, K., & Vogt, P. K. (1977). The RNA of avian acute leukemia virus MC29. Proceedings of the National Academy of Sciences of the United States of America, 74, 4320–4324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilers, M. (1999). Control of cell proliferation by Myc family genes. Molecules and Cells, 9, 1–6.

    CAS  PubMed  Google Scholar 

  • El-Naggar, A. K., Lai, S., Tucker, S. A., Clayman, G. L., Goepfert, H., Hong, W. K., & Huff, V. (1999). Frequent loss of imprinting at the IGF2 and H19 genes in head and neck squamous carcinoma. Oncogene, 18, 7063–7069.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., Ma, J., Liu, S., Wang, J., & Chen, Y. (2019). A noncoding RNA LINC00504 interacts with c-Myc to regulate tumor metabolism in colon cancer. Journal of Cellular Biochemistry, 120, 14725–14734.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Y. C., Liu, X. Y., Teng, L., Ji, Q., Wu, Y., Li, J. M., et al. (2020). c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis. Nature Communications, 11, 4980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frith, M. C., Forrest, A. R., Nourbakhsh, E., Pang, K. C., Kai, C., Kawai, J., et al. (2006). The abundance of short proteins in the mammalian proteome. PLoS Genetics, 2, e52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, Z. H., Suppola, S., Liu, J., Heikkila, P., Janne, J., & Voutilainen, R. (2002). Association of H19 promoter methylation with the expression of H19 and IGF-II genes in adrenocortical tumors. Journal of Clinical Endocrinology and Metabolism, 87, 1170–1176.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gutierrez, L., Delgado, M. D., & Leon, J. (2019). MYC oncogene contributions to release of cell cycle brakes. Genes (Basel), 10, 244.

    Article  CAS  Google Scholar 

  • Guo, X., & Hua, Y. (2017). CCAT1: An oncogenic long noncoding RNA in human cancers. Journal of Cancer Research and Clinical Oncology, 143, 555–562.

    Article  CAS  PubMed  Google Scholar 

  • Hart, J. R., Roberts, T. C., Weinberg, M. S., Morris, K. V., & Vogt, P. K. (2014). MYC regulates the non-coding transcriptome. Oncotarget, 5, 12543–12554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart, J. R., Weinberg, M. S., Morris, K. V., Roberts, T. C., Janda, K. D., Garner, A. L., & Vogt, P. K. (2016). MINCR is not a MYC-induced lncRNA. Proceedings of the National Academy of Sciences of the United States of America, 113, E496–E497.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He, X., Tan, X., Wang, X., Jin, H., Liu, L., Ma, L., et al. (2014). C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumour Biology, 35, 12181–12188.

    Article  CAS  PubMed  Google Scholar 

  • He, J., Li, F., Zhou, Y., Hou, X., Liu, S., Li, X., et al. (2020a). LncRNA XLOC_006390 promotes pancreatic carcinogenesis and glutamate metabolism by stabilizing c-Myc. Cancer Letters, 469, 419–428.

    Article  CAS  PubMed  Google Scholar 

  • He, Y., Shi, Q., Zhang, Y., Yuan, X., & Yu, Z. (2020b). Transcriptome-wide 5-methylcytosine functional profiling of long non-coding RNA in hepatocellular carcinoma. Cancer Management and Research, 12, 6877–6885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horos, R., Buscher, M., Kleinendorst, R., Alleaume, A. M., Tarafder, A. K., Schwarzl, T., et al. (2019). The small non-coding vault RNA1-1 acts as a riboregulator of autophagy. Cell, 176, 1054–1067.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, A. L., Walton, Z. E., Altman, B. J., Stine, Z. E., & Dang, C. V. (2015). MYC and metabolism on the path to cancer. Seminars in Cell & Developmental Biology, 43, 11–21.

    Article  CAS  Google Scholar 

  • Hu, T., & Lu, Y. R. (2015). BCYRN1, a c-MYC-activated long non-coding RNA, regulates cell metastasis of non-small-cell lung cancer. Cancer Cell International, 15, 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, G., Lou, Z., & Gupta, M. (2014). The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS ONE, 9, e107016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Wang, F., Xu, F., Fang, K., Fang, Z., Shuai, X., et al. (2020). A reciprocal feedback of Myc and lncRNA MTSS1-AS contributes to extracellular acidity-promoted metastasis of pancreatic cancer. Theranostics, 10, 10120–10140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J. Z., Chen, M., Chen, G. X. C., Zhu, S., Huang, H., Hu, M., et al. (2017). A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Molecular Cell, 68, 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Huarte, M. (2015). The emerging role of lncRNAs in cancer. Nature Medicine, 21, 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  • Hung, C. L., Wang, L. Y., Yu, Y. L., Chen, H. W., Srivastava, S., Petrovics, G., & Kung, H. J. (2014). A long noncoding RNA connects c-Myc to tumor metabolism. Proceedings of the National Academy of Sciences of the United States of America, 111, 18697–18702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst, L. D., & Smith, N. G. (1999). Molecular evolutionary evidence that H19 mRNA is functional. Trends in Genetics, 15, 134–135.

    Article  CAS  PubMed  Google Scholar 

  • Ingolia, N. T., Lareau, L. F., & Weissman, J. S. (2011). Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell, 147, 789–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, Z., Song, R., Regev, A., & Struhl, K. (2015). Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins. ELIFE, 4, e8890.

    Article  Google Scholar 

  • Kawasaki, Y., Komiya, M., Matsumura, K., Negishi, L., Suda, S., Okuno, M., et al. (2016). MYU, a target lncRNA for Wnt/c-Myc signaling, mediates induction of CDK6 to promote cell cycle progression. Cell Report, 16, 2554–2564.

    Article  CAS  Google Scholar 

  • Kim, T., & Croce, C. M. (2018). Long noncoding RNAs: Undeciphered cellular codes encrypting keys of colorectal cancer pathogenesis. Cancer Letters, 417, 89–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T., Cui, R., Jeon, Y. J., Lee, J. H., Lee, J. H., Sim, H., et al. (2014). Long-range interaction and correlation between MYC enhancer and oncogenic long noncoding RNA CARLo-5. Proceedings of the National Academy of Sciences of the United States of America, 111, 4173–4178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T., Jeon, Y. J., Cui, R., Lee, J. H., Peng, Y., Kim, S. H., et al. (2015a). Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. Journal of the National Cancer Institute, 107, 505.

    Article  Google Scholar 

  • Kim, T., Cui, R., Jeon, Y. J., Fadda, P., Alder, H., & Croce, C. M. (2015b). MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression. Oncotarget, 6, 18780–18789.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohl, N. E., Kanda, N., Schreck, R. R., Bruns, G., Latt, S. A., Gilbert, F., & Alt, F. W. (1983). Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell, 35, 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Xuan, Z., & Liu, C. (2013). Long non-coding RNAs and complex human diseases. International Journal of Molecular Sciences, 14, 18790–18808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Wang, Z., Shi, H., Li, H., Li, L., Fang, R., et al. (2016). HBXIP and LSD1 scaffolded by lncRNA Hotair mediate transcriptional activation by c-Myc. Cancer Research, 76, 293–304.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., Zhang, S., & Chen, J. (2019). c-Myc induced upregulation of long non-coding RNA SNHG16 enhances progression and carcinogenesis in oral squamous cell carcinoma. Cancer Gene Therapy, 26, 400–410.

    Article  PubMed  Google Scholar 

  • Li, H., Zeng, Z., Yang, X., Chen, Y., He, L., & Wan, T. (2020). LncRNA GClnc1 may contribute to the progression of ovarian cancer by regulating p53 signaling pathway. European Journal of Histochemistry, 64, 3166.

    Article  PubMed Central  Google Scholar 

  • Li, J., Liao, T., Liu, H., Yuan, H., Ouyang, T., Wang, J., et al. (2021). Hypoxic glioma stem cell-derived exosomes containing Linc01060 promote progression of glioma by regulating the MZF1/c-Myc/HIF-1alpha. Cancer Research, 81, 114–128.

    Article  PubMed  Google Scholar 

  • Liang, J., Zhou, H., Gerdt, C., Tan, M., Colson, T., Kaye, K. M., et al. (2016). Epstein-Barr virus super-enhancer eRNAs are essential for MYC oncogene expression and lymphoblast proliferation. Proceedings of the National Academy of Sciences of the United States of America, 113, 14121–14126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, L. M., Sun, X. Y., Liu, A. W., Wu, J. B., Cheng, X. L., Lin, J. X., et al. (2014). Low expression of long noncoding XLOC_010588 indicates a poor prognosis and promotes proliferation through upregulation of c-Myc in cervical cancer. Gynecologic Oncology, 133, 616–623.

    Article  CAS  PubMed  Google Scholar 

  • Liao, Y., Jung, S. H., & Kim, T. (2020). A-to-I RNA editing as a tuner of noncoding RNAs in cancer. Cancer Letters, 494, 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. Y., Loven, J., Rahl, P. B., Paranal, R. M., Burge, C. B., Bradner, J. E., et al. (2012). Transcriptional amplification in tumor cells with elevated c-Myc. Cell, 151, 56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling, H., Spizzo, R., Atlasi, Y., Nicoloso, M., Shimizu, M., Redis, R. S., et al. (2013). CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Research, 23, 1446–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Xu, Y., Yao, B., Sui, T., Lai, L., & Li, Z. (2020a). A novel N6-methyladenosine (m6A)-dependent fate decision for the lncRNA THOR. Cell Death and Disease, 11, 613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Xu, R., Mai, S. J., Ma, Y. S., Zhang, M. Y., Cao, P. S., et al. (2020b). LncRNA CSMD1-1 promotes the progression of Hepatocellular Carcinoma by activating MYC signaling. Theranostics, 10, 7527–7544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Zheng, Y., Zhang, Y., Zhang, J., Xie, F., Guo, S., et al. (2020c). Methylation-mediated LINC00261 suppresses pancreatic cancer progression by epigenetically inhibiting c-Myc transcription. Theranostics, 10, 10634–10651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Hu, Z., Mangala, L. S., Stine, Z. E., Hu, X., Jiang, D., et al. (2018). MYC targeted long noncoding RNA DANCR promotes cancer in part by reducing p21 levels. Cancer Research, 78, 64–74.

    Article  CAS  PubMed  Google Scholar 

  • Luan, S., Luo, J., Liu, H., & Li, Z. (2019). Regulation of RNA decay and cellular function by 3’-5’ exoribonuclease DIS3L2. RNA Biology, 16, 160–165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo, L., Tang, H., Ling, L., Li, N., Jia, X., Zhang, Z., et al. (2018). LINC01638 lncRNA activates MTDH-Twist1 signaling by preventing SPOP-mediated c-Myc degradation in triple-negative breast cancer. Oncogene, 37, 6166–6179.

    Article  CAS  PubMed  Google Scholar 

  • Ma, F., Liu, X., Zhou, S., Li, W., Liu, C., Chadwick, M., & Qian, C. (2019). Long non-coding RNA FGF13-AS1 inhibits glycolysis and stemness properties of breast cancer cells through FGF13-AS1/IGF2BPs/Myc feedback loop. Cancer Letters, 450, 63–75.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, A., Pasut, A., Matsumoto, M., Yamashita, R., Fung, J., Monteleone, E., et al. (2017). mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 541, 228–232.

    Article  CAS  PubMed  Google Scholar 

  • Menezes, M. R., Balzeau, J., & Hagan, J. P. (2018). 3’ RNA uridylation in epitranscriptomics, gene regulation, and disease. Frontiers in Molecular Biosciences, 5, 61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nau, M. M., Brooks, B. J., Battey, J., Sausville, E., Gazdar, A. F., Kirsch, I. R., et al. (1985). L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature, 318, 69–73.

    Article  CAS  PubMed  Google Scholar 

  • Nie, Z., Hu, G., Wei, G., Cui, K., Yamane, A., Resch, W., et al. (2012). c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell, 151, 68–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissan, A., Stojadinovic, A., Mitrani-Rosenbaum, S., Halle, D., Grinbaum, R., Roistacher, M., et al. (2012). Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. International Journal of Cancer, 130, 1598–1606.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435, 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Olivero, C. E., Martinez-Terroba, E., Zimmer, J., Liao, C., Tesfaye, E., Hooshdaran, N., et al. (2020). p53 Activates the long noncoding RNA Pvt1b to inhibit Myc and suppress tumorigenesis. Molecular Cell, 77, 761–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang, D., Li, R., Li, Y., & Zhu, X. (2019). Construction of a competitive endogenous RNA network in uterine corpus endometrial carcinoma. Medical Science Monitor, 25, 7998–8010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisani, G., & Baron, B. (2020). NEAT1 and paraspeckles in cancer development and chemoresistance. Noncoding RNA, 6, 43.

    Article  PubMed Central  Google Scholar 

  • Raffeiner, P., Hart, J. R., Garcia-Caballero, D., Bar-Peled, L., Weinberg, M. S., & Vogt, P. K. (2020). An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 117, 6571–6579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raveh, E., Matouk, I. J., Gilon, M., & Hochberg, A. (2015). The H19 Long non-coding RNA in cancer initiation, progression and metastasis—a proposed unifying theory. Molecular Cancer, 14, 184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129, 1311–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Orera, J., Messeguer, X., Subirana, J. A., & Alba, M. M. (2014). Long non-coding RNAs as a source of new peptides. ELIFE, 3, e3523.

    Article  Google Scholar 

  • Sahu, D., Ho, S. Y., Juan, H. F., & Huang, H. C. (2018). High-risk, expression-based prognostic long noncoding rna signature in neuroblastoma. JNCI Cancer Spectrum, 2, y15.

    Article  Google Scholar 

  • Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146, 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson, V. B., Rong, N. H., Han, J., Yang, Q., Aris, V., Soteropoulos, P., et al. (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Research, 67, 9762–9770.

    Article  CAS  PubMed  Google Scholar 

  • Shahabi, S., Kumaran, V., Castillo, J., Cong, Z., Nandagopal, G., Mullen, D. J., et al. (2019). LINC00261 is an epigenetically regulated tumor suppressor essential for activation of the DNA damage response. Cancer Research, 79, 3050–3062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, W., Liang, X. H., Sun, H., De Hoyos, C. L., & Crooke, S. T. (2017). Depletion of NEAT1 lncRNA attenuates nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation. PLoS ONE, 12, e173494.

    Google Scholar 

  • Shi, X., Cui, Z., Liu, X., Wu, S., Wu, Y., Fang, F., & Zhao, H. (2019). LncRNA FIRRE is activated by MYC and promotes the development of diffuse large B-cell lymphoma via Wnt/beta-catenin signaling pathway. Biochemical and Biophysical Research Communications, 510, 594–600.

    Article  CAS  PubMed  Google Scholar 

  • Shigeyasu, K., Toden, S., Ozawa, T., Matsuyama, T., Nagasaka, T., Ishikawa, T., et al. (2020). The PVT1 lncRNA is a novel epigenetic enhancer of MYC, and a promising risk-stratification biomarker in colorectal cancer. Molecular Cancer, 19, 155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shima, H., & Igarashi, K. (2020). N 1-methyladenosine (m1A) RNA modification: The key to ribosome control. Journal of Biochemistry, 167, 535–539.

    Article  CAS  PubMed  Google Scholar 

  • Sui, J., Miao, Y., Han, J., Nan, H., Shen, B., Zhang, X., et al. (2018a). Systematic analyses of a novel lncRNA-associated signature as the prognostic biomarker for Hepatocellular Carcinoma. Cancer Medicine, 7, 3240.

    Article  CAS  PubMed Central  Google Scholar 

  • Sui, Y., Han, Y., Zhao, X., Li, D., & Li, G. (2018b). Long non-coding RNA GClnc1 promotes tumorigenesis in osteosarcoma by inhibiting p53 signaling. Biochemical and Biophysical Research Communications, 507, 36–42.

    Article  CAS  PubMed  Google Scholar 

  • Sun, T. T., He, J., Liang, Q., Ren, L. L., Yan, T. T., Yu, T. C., et al. (2016). LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discovery, 6, 784–801.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Jin, S. D., Zhu, Q., Han, L., Feng, J., Lu, X. Y., et al. (2017). Long non-coding RNA LUCAT1 is associated with poor prognosis in human non-small lung cancer and regulates cell proliferation via epigenetically repressing p21 and p57 expression. Oncotarget, 8, 28297–28311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, Q., Hao, Q., & Prasanth, K. V. (2018). Nuclear long noncoding RNAs: Key regulators of gene expression. Trends in Genetics, 34, 142–157.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi, S., Hofmann, W. K., Tsukasaki, K., Takeuchi, N., Ikezoe, T., Matsushita, M., et al. (2007). Loss of H19 imprinting in adult T-cell leukaemia/lymphoma. British Journal of Haematology, 137, 380–381.

    Article  CAS  PubMed  Google Scholar 

  • Tang, J., Yan, T., Bao, Y., Shen, C., Yu, C., Zhu, X., et al. (2019). LncRNA GLCC1 promotes colorectal carcinogenesis and glucose metabolism by stabilizing c-Myc. Nature Communications, 10, 3499.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanos, V., Prus, D., Ayesh, S., Weinstein, D., Tykocinski, M. L., De-Groot, N., et al. (1999). Expression of the imprinted H19 oncofetal RNA in epithelial ovarian cancer. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 85, 7–11.

    Article  CAS  PubMed  Google Scholar 

  • Tauber, H., Huttelmaier, S., & Kohn, M. (2019). POLIII-derived non-coding RNAs acting as scaffolds and decoys. J Molecular Cell Biology, 11, 880–885.

    Article  Google Scholar 

  • Tran, D., Kessler, C., Niehus, S. E., Mahnkopf, M., Koch, A., & Tamura, T. (2018). Myc target gene, long intergenic noncoding RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and cell survival by titrating tumor suppressor microRNAs. Oncogene, 37, 75–85.

    Article  CAS  PubMed  Google Scholar 

  • Tseng, Y. Y., Moriarity, B. S., Gong, W., Akiyama, R., Tiwari, A., Kawakami, H., et al. (2014). PVT1 dependence in cancer with MYC copy-number increase. Nature, 512, 82–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viswanathan, S. R., Daley, G. Q., & Gregory, R. I. (2008). Selective blockade of microRNA processing by Lin28. Science, 320, 97–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt, P. K. (2012). Retroviral oncogenes: A historical primer. Nature Reviews Cancer, 12, 639–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K. C., & Chang, H. Y. (2011). Molecular mechanisms of long noncoding RNAs. Molecular Cell, 43, 904–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K. C., Yang, Y. W., Liu, B., Sanyal, A., Corces-Zimmerman, R., Chen, Y., et al. (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472, 120–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, O., Yang, F., Liu, Y., Lv, L., Ma, R., Chen, C., et al. (2017). C-MYC-induced upregulation of lncRNA SNHG12 regulates cell proliferation, apoptosis and migration in triple-negative breast cancer. American Journal of Translational Research, 9, 533–545.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Z., Yang, B., Zhang, M., Guo, W., Wu, Z., Wang, Y., et al. (2018). lncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes cell-cycle progression in cancer. Cancer Cell, 33, 706–720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Yang, Y., Zhang, G., Li, J., Wu, X., Ma, X., et al. (2019a). Long noncoding RNA EMS connects c-Myc to cell cycle control and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 116, 14620–14629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Cho, K. B., Li, Y., Tao, G., Xie, Z., & Guo, B. (2019b). Long noncoding RNA (lncRNA)-mediated competing endogenous rna networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. International Journal of Molecular Sciences, 20, 5758.

    Article  CAS  PubMed Central  Google Scholar 

  • Wang, Z., Zhang, J., Yang, B., Li, R., Jin, L., Wang, Z., et al. (2019c). Long intergenic noncoding RNA 00261 acts as a tumor suppressor in non-small cell lung cancer via regulating miR-105/FHL1 axis. Journal of Cancer, 10, 6414–6421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilusz, J. E., Freier, S. M., & Spector, D. L. (2008). 3’ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell, 135, 919–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrana, J. L. (1994). H19, a tumour suppressing RNA? BioEssays, 16, 89–90.

    Article  CAS  PubMed  Google Scholar 

  • Wu, M., & Shen, J. (2019). From super-enhancer non-coding RNA to Immune checkpoint: frameworks to functions. Frontiers in Oncology, 9, 1307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, P., Mo, Y., Peng, M., Tang, T., Zhong, Y., Deng, X., et al. (2020a). Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Molecular Cancer, 19, 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, R., Li, L., Bai, Y., Yu, B., Xie, C., Wu, H., et al. (2020b). The long noncoding RNA LUCAT1 promotes colorectal cancer cell proliferation by antagonizing Nucleolin to regulate MYC expression. Cell Death Dis, 11, 908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, Y., Li, Z., Shen, J., Chan, M. T., & Wu, W. K. (2016). CCAT1: A pivotal oncogenic long non-coding RNA in human cancers. Cell Proliferation, 49, 255–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, T. P., Ma, P., Wang, W. Y., Shuai, Y., Wang, Y. F., Yu, T., et al. (2019). KLF5 and MYC modulated LINC00346 contributes to gastric cancer progression through acting as a competing endogeous RNA and indicates poor outcome. Cell Death and Differentiation, 26, 2179–2193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, F., Xue, X., Zheng, L., Bi, J., Zhou, Y., Zhi, K., et al. (2014). Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS Journal, 281, 802–813.

    Article  CAS  Google Scholar 

  • Yang, Z., Zhang, T., Han, S., Kusumanchi, P., Huda, N., Jiang, Y., & Liangpunsakul, S. (2020). Long noncoding RNA H19—a new player in the pathogenesis of liver diseases. Translational Research-Journal, S1931–5244, 30281–30284.

    Google Scholar 

  • Yeganeh, M., & Hernandez, N. (2020). RNA polymerase III transcription as a disease factor. Genes & Development, 34, 865–882.

    Article  CAS  Google Scholar 

  • Yin, Q. F., Yang, L., Zhang, Y., Xiang, J. F., Wu, Y. W., Carmichael, G. G., & Chen, L. L. (2012). Long noncoding RNAs with snoRNA ends. Molecular Cell, 48, 219–230.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., Li, L., Zheng, Z., Chen, S., Chen, E., & Hu, Y. (2017). Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. Journal of Cellular and Molecular Medicine, 21, 955–967.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, C., Liu, S., Lu, S., Yu, X., Lai, J., Wu, Y., et al. (2018). The c-Myc-regulated lncRNA NEAT1 and paraspeckles modulate imatinib-induced apoptosis in CML cells. Molecular Cancer, 17, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, E., Li, W., Yin, D., De, W., Zhu, L., Sun, S., & Han, L. (2016a). c-Myc-regulated long non-coding RNA H19 indicates a poor prognosis and affects cell proliferation in non-small-cell lung cancer. Tumour Biology, 37, 4007–4015.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Cao, L., Fan, P., Mei, Y., & Wu, M. (2016b). LncRNA-MIF, a c-Myc-activated long non-coding RNA, suppresses glycolysis by promoting Fbxw7-mediated c-Myc degradation. EMBO Reports, 17, 1204–1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X. Z., Liu, H., & Chen, S. R. (2020). Mechanisms of long non-coding RNAs in cancers and their dynamic regulations. Cancers (Basel), 12, 1245.

    Article  CAS  Google Scholar 

  • Zhuang, C., Ma, Q., Zhuang, C., Ye, J., Zhang, F., & Gui, Y. (2019). LncRNA GClnc1 promotes proliferation and invasion of bladder cancer through activation of MYC. The FASEB Journal, 33, 11045–11059.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Peter K. Vogt for the review and scientific comments and Anja Zembrzycki for manuscript proofreading. This work was supported by the National Natural Science Foundation of China (NSFC) (Project No. 82073120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taewan Kim.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T. LncRNAs as key players in the MYC pathways. GENOME INSTAB. DIS. 2, 24–38 (2021). https://doi.org/10.1007/s42764-021-00032-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42764-021-00032-3

Keywords

Navigation