Skip to main content

Advertisement

Log in

In vitro antitumor evaluation of 4H-chromene-3-carbonitrile derivatives as a new series of apoptotic inducers

  • Research Article
  • Published:
Tumor Biology

Abstract

Apoptosis is a naturally occurring process by which a cell is directed to programmed cell death. Chemotherapy drugs affect the cancer cells by the apoptotic induction. During the present study, a series of 4H-chromene-3-carbonitrile was synthesized by one-pot method as the inducers of apoptosis. Cytotoxic effects of six compounds of 4H-chromene-3-carbonitrile were evaluated against five tumor cell lines, with the help of colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Compound 4 showed significant cytotoxic activity and was selected for conjugation with the synthesized gold nanoparticles by aspartic acid. Also, we evaluated apoptosis induction capacity of the selected compound with the help of fluorescent dyes and DNA fragmentation. The result showed that the conjugated and non-conjugated forms of compound 4 were effective in inducing apoptosis and conjugated one had more efficiency and reduced the effective dose. Also, molecular modeling experiments involving compound 4 and colchicine binding site of tubulin dimer showed several strong hydrogen bonds and hydrophobic interactions to many important amino acid residues and GTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. ODriscoll L, Linehan R, Clynes M. Survivin: role in normal cells and in pathological conditions. Curr Cancer Drug Targets. 2003;3(2):131–52.

    Article  CAS  Google Scholar 

  2. Lawen A. Apoptosis—an introduction. Bioessays. 2003;25(9):888–96.

    Article  CAS  PubMed  Google Scholar 

  3. Coley HM. Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat Rev. 2008;34(4):378–90.

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Chen B, Chen J, Cai X, Xia G, Liu R, et al. Synthesis and antitumor efficacy of daunorubicin-loaded magnetic nanoparticles. Int J Nanomedicine. 2011;6:203.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Lee KY, Nam DH, Moon CS, Seo SH, Lee JY, Lee YS. Synthesis and anticancer activity of lavendustin A derivatives containing arylethenylchromone substituents. Eur J Med Chem. 2006;41(8):991–6.

    Article  CAS  PubMed  Google Scholar 

  6. Sairafianpour M, Kayser O, Christensen J, Asfa M, Witt M, Stærk D, et al. Leishmanicidal and antiplasmodial activity of constituents of Smirnowia iranica. J Nat Prod. 2002;65(12):1754–8.

    Article  CAS  PubMed  Google Scholar 

  7. Nancy T, Subin MZ. Pharmacological activities of chromene derivatives: an overview. Asian J Pharm Clin Res. 2013;6(2):11–5.

    Google Scholar 

  8. Narender T, Shweta GS. A convenient and biogenetic type synthesis of few naturally occurring chromeno dihydrochalcones and their in vitro antileishmanial activity. Bioorg Med Chem Lett. 2004;14(15):3913–6. doi:10.1016/j.bmcl.2004.05.071.

    Article  CAS  PubMed  Google Scholar 

  9. Kasibhatla S, Gourdeau H, Meerovitch K, Drewe J, Reddy S, Qiu L, et al. Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol Cancer Ther. 2004;3(11):1365–73.

    CAS  PubMed  Google Scholar 

  10. Aryapour H, Mahdavi M, Mohebbi SR, Zali MR, Foroumadi A. Anti-proliferative and apoptotic effects of the derivatives from 4-aryl-4H-chromene family on human leukemia K562 cells. Arch Pharm Res. 2012;35(9):1573–82. doi:10.1007/s12272-012-0908-y.

    Article  CAS  PubMed  Google Scholar 

  11. Cai SX, Drewe J, Kemnitzer W. Discovery of 4-aryl-4H-chromenes as potent apoptosis inducers using a cell- and caspase-based Anti-cancer Screening Apoptosis Program (ASAP): SAR studies and the identification of novel vascular disrupting agents. Anti Cancer Agents Med Chem. 2009;9(4):437–56.

    Article  CAS  Google Scholar 

  12. Ruan J, Wang K, Song H, Xu X, Ji J, Cui D. Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles. Nanoscale Res Lett. 2011;6(1):299. doi:10.1186/1556-276X-6-299.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Thrall JH. Nanotechnology and medicine1. Radiology. 2004;230(2):315–8.

    Article  PubMed  Google Scholar 

  14. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  15. Fishman ML, Cooke PH, Coffin DR. Nanostructure of native pectin sugar acid gels visualized by atomic force microscopy. Biomacromolecules. 2004;5(2):334–41.

    Article  CAS  PubMed  Google Scholar 

  16. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    Article  CAS  PubMed  Google Scholar 

  17. Strober W. Trypan blue exclusion test of cell viability. Current protocols in immunology / edited by John E Coligan [et al]. 2001; Appendix 3: Appendix 3B. doi:10.1002/0471142735.ima03bs21.

  18. Zarabi M, Farhangi A, Mazdeh S, Ansarian Z, Zare D, Mehrabi M et al. Synthesis of gold nanoparticles coated with aspartic acid and their conjugation with FVIII protein and FVIII antibody. Ind J Clin Biochem. 2013:1-7. doi:10.1007/s12291-013-0323-2.

  19. Gibb RK, Gercel-Taylor C. Use of diphenylamine in the detection of apoptosis. Ovarian Cancer. Springer; 2001. p. 679-80.

  20. Choi BK, Choi CH, Oh HL, Kim YK. Role of ERK activation in cisplatin-induced apoptosis in A172 human glioma cells. Neurotoxicology. 2004;25(6):915–24.

    Article  CAS  PubMed  Google Scholar 

  21. Wylie A, Kerr J, Currie A. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306.

    Article  Google Scholar 

  22. Sanner MF. Python: a programming language for software integration and development. J Mol Graph Model. 1999;17(1):57–61.

    CAS  PubMed  Google Scholar 

  23. Schuttelkopf AW, Van Aalten DM. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60(8):1355–63.

    Article  PubMed  Google Scholar 

  24. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.

    Article  CAS  PubMed  Google Scholar 

  26. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127–34.

    Article  CAS  PubMed  Google Scholar 

  27. Sabry NM, Mohamed HM, Khattab ES, Motlaq SS, El-Agrody AM. Synthesis of 4H-chromene, coumarin, 12H-chromeno[2,3-d]pyrimidine derivatives and some of their antimicrobial and cytotoxicity activities. Eur J Med Chem. 2011;46(2):765–72. doi:10.1016/j.ejmech.2010.12.015.

    Article  CAS  PubMed  Google Scholar 

  28. Bruhlmann C, Ooms F, Carrupt PA, Testa B, Catto M, Leonetti F, et al. Coumarins derivatives as dual inhibitors of acetylcholinesterase and monoamine oxidase. J Med Chem. 2001;44(19):3195–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kesten SR, Heffner TG, Johnson SJ, Pugsley TA, Wright JL, Wise LD. Design, synthesis, and evaluation of chromen-2-ones as potent and selective human dopamine D4 antagonists. J Med Chem. 1999;42(18):3718–25. doi:10.1021/jm990266k.

    Article  CAS  PubMed  Google Scholar 

  30. Mahdavi M, Davoodi J, Zali MR, Foroumadi A. Concomitant activation of caspase-9 and down-regulation of IAP proteins as a mechanism of apoptotic death in HepG2, T47D and HCT-116 cells upon exposure to a derivative from 4-aryl-4H-chromenes family. Biomed Pharmacother. 2011;65(3):175–82. doi:10.1016/j.biopha.2011.03.001.

    Article  CAS  PubMed  Google Scholar 

  31. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5(5):829–34. doi:10.1021/nl050074e.

    Article  CAS  PubMed  Google Scholar 

  32. Lee Y, Garcia MA, Frey Huls NA, Sun S. Synthetic tuning of the catalytic properties of Au‐Fe3O4 nanoparticles. Angew Chem. 2010;122(7):1293–6.

    Article  Google Scholar 

  33. Bai R, Pei X-F, Boyé O, Getahun Z, Grover S, Bekisz J, et al. Identification of cysteine 354 of β-tubulin as part of the binding site for the A ring of colchicine. J Biol Chem. 1996;271(21):12639–45.

    Article  CAS  PubMed  Google Scholar 

  34. Kemnitzer W, Drewe J, Jiang S, Zhang H, Zhao J, Crogan-Grundy C, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8-positions. J Med Chem. 2007;50(12):2858–64.

    Article  CAS  PubMed  Google Scholar 

  35. Kemnitzer W, Drewe J, Jiang S, Zhang H, Crogan-Grundy C, Labreque D, et al. Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high throughput screening assay. 4. Structure-activity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions. J Med Chem. 2008;51(3):417–23.

    Article  CAS  PubMed  Google Scholar 

  36. Bayomi SM, El-Kashef HA, El-Ashmawy MB, Nasr MNA, El-Sherbeny MA, Badria FA, et al. Synthesis and biological evaluation of new curcumin derivatives as antioxidant and antitumor agents. Med Chem Res. 2013;22(3):1147–62.

    Article  CAS  Google Scholar 

  37. Mooney L, Al-Sakkaf K, Brown B, Dobson P. Apoptotic mechanisms in T47D and MCF-7 human breast cancer cells. Br J Cancer. 2002;87(8):909–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Liang Y, Yan C, Schor NF. Apoptosis in the absence of caspase 3. Oncogene. 2001;20(45):6570–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Amaneh Javid for the critical reading of manuscript. This work was supported by a grant from Science and Research Branch, Islamic Azad University, Kurdistan, Iran. We are grateful for the help provided by the Department of Pilot Nanobiotechnology, Pasteur Institute, Tehran, Iran.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hassan Aryapour or Azim Akbarzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saffari, Z., Aryapour, H., Akbarzadeh, A. et al. In vitro antitumor evaluation of 4H-chromene-3-carbonitrile derivatives as a new series of apoptotic inducers. Tumor Biol. 35, 5845–5855 (2014). https://doi.org/10.1007/s13277-014-1775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1775-6

Keywords

Navigation