Skip to main content

Advertisement

Log in

The newly synthesized 2-arylnaphthyridin-4-one, CSC-3436, induces apoptosis of non-small cell lung cancer cells by inhibiting tubulin dynamics and activating CDK1

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the anticancer therapeutic potential of a new synthetic compound, 2-(3-hydroxyphenyl)-5-methylnaphthyridin-4-one (CSC-3436), on non-small cell lung cancer (NSCLC) cells.

Methods

Cell viability was determined by MTT assay. Cell cycle distribution was assessed by propidium iodide staining and subjected to flow cytometry analysis. Protein expression was detected by western blot analysis. Pharmacological inhibitors and shRNAs were applied to examine the possible pathways involved CSC-3436-inhibited viability of NSCLC cells.

Results

CSC-3436 decreased NSCLC cell viability by inducing apoptosis. In vivo and in vitro tubulin polymerization assays revealed that CSC-3463 caused tubulin depolymerization by directly binding to the colchicine-binding site. Furthermore, CSC-3436 caused the mitotic arrest with a marked activation of cyclin-dependent kinase 1 (CDK1) and increased the expression of phospho-Ser/Thr-Pro mitotic protein monoclonal 2. The CDK1 inhibitor, roscovitine, reversed the CSC-3436-induced upregulation of CDK1 activity as well as the mitotic arrest. DNA damage response kinases, including ataxia telangiectasia mutated (ATM), ATM and Rad3-related, DNA-dependent protein kinase, checkpoint kinase 1, and checkpoint kinase 2, were phosphorylated and activated by CSC-3436. c-Jun N-terminal kinase was activated by CSC-3436 and involved in the regulation of mitotic arrest and apoptosis. CSC-3436-induced apoptosis was accompanied by the activation of pro-apoptotic factors FADD, TRADD, and RIP and the inactivation of anti-apoptotic proteins Bcl-2 and Bcl-xL, resulting in the cleavage and subsequent activation of caspases.

Conclusions

Our results reveal the cellular events in which CSC-3436 induces tumor cell death and demonstrate that CSC-3436 is a potential tubulin-disrupting agent for antitumor therapy against NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATM:

Ataxia telangiectasia mutated

ATR:

ATM and Rad3-related

CDK1:

Cyclin-dependent kinase 1

Chk1:

Checkpoint kinase 1

Chk2:

Checkpoint kinase 2

CSC-3436:

2-(3-Hydroxyphenyl)-5-methylnaphthyridin-4-one

DAPI:

4ʹ,6ʹ-Diamino-2-phenylindole

DNA-PK:

DNA-dependent protein kinase

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

JNK:

c-Jun N-terminal kinase

MPM-2:

Phospho-Ser/Thr-Pro mitotic protein monoclonal 2

NSCLC:

Non-small cell lung cancer

PARP:

Poly(ADP-ribose)polymerase

References

  1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29

    Article  PubMed  Google Scholar 

  2. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380

    Article  CAS  PubMed  Google Scholar 

  3. Yang CH, Chen MC, Cheng AL, Hsu CH, Yeh KH, Yu YC, Whang-Peng J, Yang PC (2005) Survival outcome of inoperable non-small cell lung cancer patients receiving conventional dose epirubicin and Paclitaxel as first-line treatment. Oncology 68:350–355

    Article  CAS  PubMed  Google Scholar 

  4. Kuwabara K, Matsuda S, Fushimi K, Anan M, Ishikawa KB, Horiguchi H, Hayashida K, Fujimori K (2009) Differences in practice patterns and costs between small cell and non-small cell lung cancer patients in Japan. Tohoku J Exp Med 217:29–35

    Article  PubMed  Google Scholar 

  5. Wade RH (2009) On and around microtubules: an overview. Mol Biotechnol 43:177–191

    Article  CAS  PubMed  Google Scholar 

  6. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9:790–803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Johnson CE, Huang YY, Parrish AB, Smith MI, Vaughn AE, Zhang Q, Wright KM, Van Dyke T, Wechsler-Reya RJ, Kornbluth S, Ml Deshmukh (2007) Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc Natl Acad Sci USA 104:20820–20825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bhalla KN (2003) Microtubule-targeting anticancer agents and apoptosis. Oncogene 22:9075–9086

    Article  CAS  PubMed  Google Scholar 

  9. Esteve MA, Carre M, Braguer D (2007) Microtubules in apoptosis induction: are they necessary? Curr Cancer Drug Targets 7:713–729

    Article  CAS  PubMed  Google Scholar 

  10. Allan LA, Clarke PR (2007) Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell 26:301–310

    Article  CAS  PubMed  Google Scholar 

  11. Lolli G, Johnson LN (2005) CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4:572–577

    Article  CAS  PubMed  Google Scholar 

  12. Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641

    Article  CAS  PubMed  Google Scholar 

  13. Castedo M, Perfettini JL, Roumier T, Kroemer G (2002) Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 9:1287–1293

    Article  CAS  PubMed  Google Scholar 

  14. Ibrado AM, Kim CN, Bhalla K (1998) Temporal relationship of CDK1 activation and mitotic arrest to cytosolic accumulation of cytochrome c and caspase-3 activity during Taxol-induced apoptosis of human AML HL-60 cells. Leukemia 12:1930–1936

    Article  CAS  PubMed  Google Scholar 

  15. Sakurikar N, Eichhorn JM, Chambers TC (2012) Cyclin dependent kinase-1 (Cdk1)/cyclin B1 dictates cell fate after mitotic arrest via phosphorylation of regulation of anti-apoptotic Bcl-2 proteins. J Bio Chem 287:39193–39204

    Article  CAS  Google Scholar 

  16. Manthey JA, Grohmann K, Guthrie N (2001) Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem 8:135–153

    Article  CAS  PubMed  Google Scholar 

  17. Wang HK, Xia Y, Yang ZY, Natschke SL, Lee KH (1998) Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agent. Adv Exp Med Biol 439:191–225

    CAS  PubMed  Google Scholar 

  18. Tapia C, Kutzner H, Mentzel T, Savic S, Baumhoer D, Glatz K (2006) Two mitosis-specific antibodies, MPM-2 and phospho-histone H3 (Ser 28), allow rapid and precise determination of mitotic activity. Am J Surg Pathol 30:83–89

    Article  PubMed  Google Scholar 

  19. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    Article  CAS  PubMed  Google Scholar 

  20. Vermeulen K, Berneman ZN, Van Bockstaele DR (2003) Cell cycle and apoptosis. Cell Prolif 36:165–175

    Article  CAS  PubMed  Google Scholar 

  21. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV, Pan Y, Nezi L, Protopopov A, Chowdhury D, Pellman D (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Huang X, Traganos F, Darzynkiewicz Z (2003) DNA damage induced by DNA topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle 2:614–619

    CAS  PubMed  Google Scholar 

  23. Furuta T, Takemura H, Liao ZY, Aune GJ, Redon C, Sedelinikova OA, Pilch DR, Rogakou EP, Celeste A, Chen HT, Nussenzweig A, Aladjem MI, Bonner WM, Pommier Y (2003) Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J Biol Chem 278:20303–20312

    Article  CAS  PubMed  Google Scholar 

  24. Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y, Seger R (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20:147–155

    Article  CAS  PubMed  Google Scholar 

  25. Boldt S, Weidle UH, Kolch W (2002) The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis 23:1831–1838

    Article  CAS  PubMed  Google Scholar 

  26. Selimovic D, Hassan M, Haikel Y, Hengge UR (2008) Taxol-induced mitochondrial stress in melanoma cells is mediated by activation of c-Jun N-terminal kinase (JNK) and p38 pathways via uncoupling protein 2. Cell Signal 20:311–322

    Article  CAS  PubMed  Google Scholar 

  27. Beardmore VA, Ahonen LJ, Gorbsky GJ, Kallio MJ (2004) Survivin dynamics increases at centromeres during G2/M phase transition and is regulated by microtubule-attachment and Aurora B kinase activity. J Cell Sci 117:4033–4042

    Article  CAS  PubMed  Google Scholar 

  28. Carmena M, Earnshaw WC (2003) The cellular geography f aurora kinases. Nat Rev Mol Cell Biol 4:842–854

    Article  CAS  PubMed  Google Scholar 

  29. Nitta M, Kobayashi O, Honda S, Hirota T, Kuninaka S, Marumoto T, Ushio Y, Saya H (2004) Spindle checkpoint function is required for mitotic catastrophe induced by DNA damaging agents. Oncogene 23:6548–6558

    Article  CAS  PubMed  Google Scholar 

  30. Ducommun B, Brambilla P, Felix MA, Franza BR Jr, Karsenti E, Draetta G (1991) Cdc2 phosphorylation is required for its interaction with cyclin. EMBO J 10:3311–3319

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Terrano DT, Upreti M, Chambersb TC (2010) Cyclin-dependent kinase 1-mediated Bcl-xL/Bcl-2 phosphorylation acts as a functional link coupling mitotic arrest and apoptosis. Mol Cell Biol 30:640–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Lu C, Zhu F, Cho YY, Tang F, Zykova T, Ma WY, Bode AM, Don Z (2006) Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 23:121–132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Liu J, Lin A (2005) Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15:36–42

    Article  PubMed  Google Scholar 

  34. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c mediated death pathway. Science 288:870–874

    Article  CAS  PubMed  Google Scholar 

  35. Gutierrez GJ, Tsuji T, Cross JV, Davis RJ, Templeton DJ, Jiang W, Ronai ZA (2010) JNK-mediated phosphorylation of Cdc25C regulates cell cycle entry and G(2)/M DNA damage checkpoint. J Biol Chem 285:14217–14228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Chu R, Terrano DT, Chambers TC (2012) Cdk1/cyclin B plays a key role in mitotic arrest-induced apoptosis by phosphorylation of Mcl-1, promoting its degradation and freeing Bak from sequestration. Biochem Pharmacol 83:199–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  38. Jordan MA, Kamath K (2007) How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets 7:730–742

    Article  CAS  PubMed  Google Scholar 

  39. Berthelet J, Dubrez L (2013) Regulation of apoptosis by inhibitors of apoptosis (IAPs). Cell 2:163–187

    Article  CAS  Google Scholar 

  40. Mita AC, Mita MM, Nawrocki ST, Giles FJ (2008) Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 14:5000–5005

    Article  CAS  PubMed  Google Scholar 

  41. Lens SM, Wolthuis RM, Klompmaker R et al (2003) Survivin is required for a sustained spindle checkpoint arrest in response to lack of tension. EMBO J 22:2934–2947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Shimada K, Matsuyoshi S, Nakamura M, Ishida E, Kishi M, Konishi N (2004) Phosphorylation of FADD is critical for sensitivity to anticancer drug-induced apoptosis. Carcinogenesis 25:1089–1097

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Vallabhaneni R, Loughran PA, Shapiro R, Yin XM, Yuan Y, Billiar TR (2008) Changes in FADD levels, distribution, and phoshorylation in TNF alpha-induced apoptosis in hepatocytes is caspase-3, caspase-8 and BID dependent. Apoptosis 13:983–992

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of the Republic of China (Grant Numbers NSC102-2325-B-039-005 and NSC102-2320-B-039-012 to S. C. Kuo, and NSC102-2321-B-039-004 to Y. L. Yu), the National Health Research Institute of the Republic of China (Grant Number NHRI-EX102-10245BI to Y. L. Yu), China Medical University Hospital (Grant Number DMR-104-097 and DMR-104-108 to L.-C. Chang), and CMU under the Aim for Top University Plan of the Ministry of Education, Taiwan.

Conflict of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Chu Chang or Sheng-Chu Kuo.

Additional information

Ling-Chu Chang and Yung-Luen Yu have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, LC., Yu, YL., Liu, CY. et al. The newly synthesized 2-arylnaphthyridin-4-one, CSC-3436, induces apoptosis of non-small cell lung cancer cells by inhibiting tubulin dynamics and activating CDK1. Cancer Chemother Pharmacol 75, 1303–1315 (2015). https://doi.org/10.1007/s00280-015-2765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-015-2765-0

Keywords

Navigation