Skip to main content

Advertisement

Log in

Wnt pathway activity confers chemoresistance to cancer stem-like cells in a neuroblastoma cell line

  • Research Article
  • Published:
Tumor Biology

Abstract

Neuroblastoma is the most common solid tumor in infancy. We have shown that the neuroblastoma cell line SK-N-SH contains CD133+ cells that are more resistant than 133− cells to Doxorubicin (DOX), a common chemotherapeutic agent. We hypothesize that activation of wnt signaling pathway in CD133+ cells contributes to their chemoresistance. To test this hypothesis, CD133+ cells were positively selected using magnetic micro-beads. Subsequently, CD133+ and negatively selected CD133− cells were treated with 100 ng/ml of DOX for up to 72 h. Then, cells were either lysed for total RNA extraction or fixed for immunostaining. Wnt “SIGNATURE” PCR Array was used to determine if changes in wnt related gene expression levels occurred and to estimate a pathway activity score. Expression of wnt pathway proteins β-Catenin and p-GSK3β (S-9) was determined by immunocytochemistry. Two wnt pathway inhibitors were used to determine the changes in cell viability, using the MTT assay. Results showed that wnt related genes were differentially expressed in CD133+ cells as compared to CD133− cells, both with and without DOX treatment. Pathway activity scores showed that DOX treatment significantly suppressed the wnt pathway activity in CD133− cells. Expression of β-catenin and p-GSK3β (S-9) was significantly greater in DOX treated and untreated CD133+ cells. The presence of wnt inhibitors with DOX decreased the number of live cells in CD133+ group and the percentage of live cells in both groups were equal. These data suggest that higher wnt pathway activity could be responsible for the chemoresistance of CD133+ cells in neuroblastoma cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bernstein ML, et al. A population-based study of neuroblastoma incidence, survival, and mortality in North America. J Clin Oncol. 1992;10(2):323–9.

    PubMed  CAS  Google Scholar 

  2. Mahller YY, et al. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS One. 2009;4(1):e4235.

    Article  PubMed  Google Scholar 

  3. Gil J, et al. Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet. 2008;49(2):193–9.

    Article  PubMed  Google Scholar 

  4. Besancon R, et al. Cancer stem cells: the emerging challenge of drug targeting. Curr Med Chem. 2009;16(4):394–416.

    Article  PubMed  CAS  Google Scholar 

  5. Cho RW, Clarke MF. Recent advances in cancer stem cells. Curr Opin Genet Dev. 2008;18(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  6. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  PubMed  CAS  Google Scholar 

  7. Al-Hajj M, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.

    Article  PubMed  CAS  Google Scholar 

  8. Singh SK, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    Article  PubMed  CAS  Google Scholar 

  9. Kamijo T. Role of stemness-related molecules in neuroblastoma. Pediatr Res. 2012;71(4 Pt 2):511–5.

    Article  PubMed  CAS  Google Scholar 

  10. Hirschmann-Jax C, et al. A distinct “side population” of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle. 2005;4(2):203–5.

    Article  PubMed  CAS  Google Scholar 

  11. Cournoyer S, et al. Genotype analysis of tumor-initiating cells expressing CD133 in neuroblastoma. Genes Chromosomes Cancer. 2012;51(8):792–804.

    Article  PubMed  CAS  Google Scholar 

  12. Coulon A, et al. Functional sphere profiling reveals the complexity of neuroblastoma tumor-initiating cell model. Neoplasia. 2011;13(10):991–1004.

    PubMed  CAS  Google Scholar 

  13. Vangipuram SD, Wang ZJ, Lyman WD. Resistance of stem-like cells from neuroblastoma cell lines to commonly used chemotherapeutic agents. Pediatr Blood Cancer. 2010;54(3):361–8.

    Article  PubMed  Google Scholar 

  14. Sartelet H, et al. CD133 expression is associated with poor outcome in neuroblastoma via chemoresistance mediated by the AKT pathway. Histopathology. 2012;60(7):1144–55.

    Article  PubMed  Google Scholar 

  15. Schiapparelli P, et al. Inhibition of the sonic hedgehog pathway by cyplopamine reduces the CD133+/CD15+ cell compartment and the in vitro tumorigenic capability of neuroblastoma cells. Cancer Lett. 2011;310(2):222–31.

    Article  PubMed  CAS  Google Scholar 

  16. Schiapparelli P, et al. Analysis of stemness gene expression and CD133 abnormal methylation in neuroblastoma cell lines. Oncol Rep. 2010;24(5):1355–62.

    PubMed  CAS  Google Scholar 

  17. Wesbuer S, et al. Association of telomerase activity with radio- and chemosensitivity of neuroblastomas. Radiat Oncol. 2010;5:66.

    Article  PubMed  Google Scholar 

  18. Liang Y, et al. Stem-like cancer cells are inducible by increasing genomic instability in cancer cells. J Biol Chem. 2010;285(7):4931–40.

    Article  PubMed  CAS  Google Scholar 

  19. Tringali C, et al. NEU4L sialidase overexpression promotes beta-catenin signaling in neuroblastoma cells, enhancing stem-like malignant cell growth. Int J Cancer. 2012.

  20. Tenbaum SP, et al. beta-Catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med. 2012.

  21. Hallett RM, et al. Small molecule antagonists of the Wnt/beta-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One. 2012;7(3):e33976.

    Article  PubMed  CAS  Google Scholar 

  22. Cui J, et al. Role of Wnt/beta-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des. 2012;18(17):2464–71.

    Article  PubMed  CAS  Google Scholar 

  23. Steg AD, et al. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res. 2012;18(3):869–81.

    Article  PubMed  CAS  Google Scholar 

  24. Pode-Shakked N, et al. Resistance or sensitivity of Wilms’ tumor to anti-FZD7 antibody highlights the Wnt pathway as a possible therapeutic target. Oncogene. 2011;30(14):1664–80.

    Article  PubMed  CAS  Google Scholar 

  25. Kim Y, et al. Wnt activation is implicated in glioblastoma radioresistance. Lab Invest. 2012;92(3):466–73.

    Article  PubMed  CAS  Google Scholar 

  26. Takebe N, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8(2):97–106.

    Article  PubMed  CAS  Google Scholar 

  27. Wang Z, et al. Mitogen-activated protein kinase phosphatase-1 is required for cisplatin resistance. Cancer Res. 2006;66(17):8870–7.

    Article  PubMed  CAS  Google Scholar 

  28. Vangipuram SD, Lyman WD. Ethanol alters cell fate of fetal human brain-derived stem and progenitor cells. Alcohol Clin Exp Res. 2010;34(9):1574–83.

    Article  PubMed  CAS  Google Scholar 

  29. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.

    Article  PubMed  CAS  Google Scholar 

  30. Luna-Ulloa LB, et al. Protein kinase C in Wnt signaling: implications in cancer initiation and progression. IUBMB Life. 2011;63(10):873–9.

    Article  PubMed  CAS  Google Scholar 

  31. Dellinger TH, et al. Role of canonical Wnt signaling in endometrial carcinogenesis. Expert Rev Anticancer Ther. 2012;12(1):51–62.

    Article  PubMed  CAS  Google Scholar 

  32. Liu J, et al. Enhancement of canonical Wnt/beta-catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells. PLoS One. 2011;6(11):e27496.

    Article  PubMed  CAS  Google Scholar 

  33. Lin YY, et al. Aberrant nuclear localization of EBP50 promotes colorectal carcinogenesis in xenotransplanted mice by modulating TCF-1 and beta-catenin interactions. J Clin Invest. 2012;122(5):1881–94.

    Article  PubMed  CAS  Google Scholar 

  34. Niehrs C, Shen J. Regulation of Lrp6 phosphorylation. Cell Mol Life Sci. 2010;67(15):2551–62.

    Article  PubMed  CAS  Google Scholar 

  35. Zeng X, et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development. 2008;135(2):367–75.

    Article  PubMed  CAS  Google Scholar 

  36. Bilic J, et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 2007;316(5831):1619–22.

    Article  PubMed  CAS  Google Scholar 

  37. Nakashima N, et al. Wnt3 gene expression promotes tumor progression in non-small cell lung cancer. Lung Cancer. 2012;76(2):228–34.

    Article  PubMed  Google Scholar 

  38. Jin X, et al. Frizzled 4 regulates stemness and invasiveness of migrating glioma cells established by serial intracranial transplantation. Cancer Res. 2011;71(8):3066–75.

    Article  PubMed  CAS  Google Scholar 

  39. Gupta S, et al. FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2010;70(17):6735–45.

    Article  PubMed  CAS  Google Scholar 

  40. Wu QL, Zierold C, Ranheim EA. Dysregulation of Frizzled 6 is a critical component of B-cell leukemogenesis in a mouse model of chronic lymphocytic leukemia. Blood. 2009;113(13):3031–9.

    Article  PubMed  CAS  Google Scholar 

  41. Miyakoshi T, et al. Expression of Wnt4 in human pituitary adenomas regulates activation of the beta-catenin-independent pathway. Endocr Pathol. 2008;19(4):261–73.

    Article  PubMed  CAS  Google Scholar 

  42. Cantilena S, et al. Frizzled receptor 6 marks rare, highly tumourigenic stem-like cells in mouse and human neuroblastomas. Oncotarget. 2011;2(12):976–83.

    PubMed  Google Scholar 

  43. Maschietto M, et al. Temporal blastemal cell gene expression analysis in the kidney reveals new Wnt and related signaling pathway genes to be essential for Wilms’ tumor onset. Cell Death Dis. 2011;2:e224.

    Article  PubMed  CAS  Google Scholar 

  44. Salsano E, et al. Expression profile of frizzled receptors in human medulloblastomas. J Neurooncol. 2012;106(2):271–80.

    Article  PubMed  CAS  Google Scholar 

  45. Lee EH, et al. Disruption of the non-canonical WNT pathway in lung squamous cell carcinoma. Clin Med Oncol. 2008;2008(2):169–79.

    PubMed  Google Scholar 

  46. Markowitz SD, Bertagnolli MM. Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60.

    Article  PubMed  CAS  Google Scholar 

  47. Ahearn TU, et al. Markers of the APC/beta-catenin signaling pathway as potential treatable, preneoplastic biomarkers of risk for colorectal neoplasms. Cancer Epidemiol Biomarkers Prev. 2012;21(6):969–79.

    Article  PubMed  CAS  Google Scholar 

  48. Huang SM, et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614–20.

    Article  PubMed  CAS  Google Scholar 

  49. Dieudonne FX, et al. Targeted inhibition of TCF activity promotes syndecan-2 expression and sensitization to doxorubicin in osteosarcoma cells and bone tumors in mice. J Bone Miner Res. 2012.

  50. Zhang F, et al. SiRNA-mediated silencing of beta-catenin suppresses invasion and chemosensitivity to doxorubicin in MG-63 osteosarcoma cells. Asian Pac J Cancer Prev. 2011;12(1):239–45.

    PubMed  Google Scholar 

  51. Eguchi M, et al. ICG-001, a novel small molecule regulator of TCF/beta-catenin transcription. Med Chem. 2005;1(5):467–72.

    Article  PubMed  CAS  Google Scholar 

  52. Kim YM, et al. The gamma catenin/CBP complex maintains survivin transcription in beta-catenin deficient/depleted cancer cells. Curr Cancer Drug Targets. 2011;11(2):213–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharada D. Vangipuram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vangipuram, S.D., Buck, S.A. & Lyman, W.D. Wnt pathway activity confers chemoresistance to cancer stem-like cells in a neuroblastoma cell line. Tumor Biol. 33, 2173–2183 (2012). https://doi.org/10.1007/s13277-012-0478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0478-0

Keywords

Navigation