Skip to main content

Advertisement

Log in

Expression of Wnt4 in Human Pituitary Adenomas Regulates Activation of the β-Catenin-Independent Pathway

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The Wnt signaling pathway has been implicated in the genesis of numerous human cancers. A member of the Wnt family of genes, Wnt4, has been known to regulate proliferation of anterior pituitary cell types in the mouse during embryonic development. In order to elucidate the roles of Wnt signaling in human pituitary adenomas, we examined the expression of Wnt4 and its putative receptor Frizzled6 (Fzd6) by immunohistochemistry in pituitary adenomas and normal pituitaries. Expression of Wnt4 was higher in growth hormone-producing adenomas (GHomas), prolactin-producing adenomas (PRLomas), and thyroid-stimulating hormone-producing adenomas (TSHomas) than in the normal pituitary. Fzd6 was widely expressed in GHomas, PRLomas, TSHomas, and gonadotropin subunit (GnSU)-positive adenomas. In normal pituitary glands, Wnt4 and Fzd6 were colocalized predominantly in follicle-stimulating hormone-, luteinizing hormone-, and α-subunits of glycoprotein hormone-positive cells. The canonical Wnt/β-catenin signaling pathway was analyzed by β-catenin immunohistochemistry. β-Catenin was localized at the cell membrane in all pituitary adenomas, but not in the nuclei. On the other hand, Erk1/2 was highly activated in GHomas and TSHomas. These results suggested that activation of Wnt4/Fzd6 signaling through a “β-catenin-independent” pathway played a role in proliferation and survival of the pituitary adenoma cells. Detailed involvement of transcription factors including Pit-1 remains to be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Asa SL, Ezzat S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19:798–827, 1998. doi:10.1210/er.19.6.798.

    Article  PubMed  CAS  Google Scholar 

  2. Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, et al. The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–9, 2004. doi:10.1002/cncr.20412.

    Article  PubMed  Google Scholar 

  3. Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 11:3286–305, 1997. doi:10.1101/gad.11.24.3286.

    Article  PubMed  CAS  Google Scholar 

  4. Miller JR. The Wnts. Genome Biol 3:reviews 3001.1–.15, 2002.

    Google Scholar 

  5. Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal 19:659–71, 2007. doi:10.1016/j.cellsig.2006.11.001.

    Article  PubMed  CAS  Google Scholar 

  6. Katoh M. WNT/PCP signaling pathway and human cancer (review). Oncol Rep 14:1583–8, 2005.

    PubMed  CAS  Google Scholar 

  7. Kühl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–83, 2000. doi:10.1016/S0168-9525(00)02028-X.

    Article  PubMed  Google Scholar 

  8. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275:1787–90, 1997. doi:10.1126/science.275.5307.1787.

    Article  PubMed  CAS  Google Scholar 

  9. Shimizu H, Julius MA, Giarré M, Zheng Z, Brown AM, Kitajewski J. Transformation by Wnt family proteins correlates with regulation of beta-catenin. Cell Growth Differ 8:1349–58, 1997.

    PubMed  CAS  Google Scholar 

  10. Michaelson JS, Leder P. β-Catenin is a downstream effector of Wnt-mediated tumorigenesis in the mammary gland. Oncogene 20:5093–9, 2001. doi:10.1038/sj.onc.1204586.

    Article  PubMed  CAS  Google Scholar 

  11. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A 98:10356–61, 2001. doi:10.1073/pnas.171610498.

    Article  PubMed  CAS  Google Scholar 

  12. Stark K, Vainio S, Vassileva G, McMahon AP. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–83, 1994. doi:10.1038/372679a0.

    Article  PubMed  CAS  Google Scholar 

  13. Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–34, 1998.

    PubMed  CAS  Google Scholar 

  14. Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405–9, 1999. doi:10.1038/17068.

    Article  PubMed  CAS  Google Scholar 

  15. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 14:650–4, 2000.

    PubMed  CAS  Google Scholar 

  16. Jeays-Ward K, Dandonneau M, Swain A. Wnt4 is required for proper male as well as female sexual development. Dev Biol 276:431–40, 2004. doi:10.1016/j.ydbio.2004.08.049.

    Article  PubMed  CAS  Google Scholar 

  17. Yu H, Pask AJ, Shaw G, Renfree MB. Differential expression of WNT4 in testicular and ovarian development in a marsupial. BMC Dev Biol 6:44, 2006. doi:10.1186/1471-213X-6-44.

    Article  PubMed  CAS  Google Scholar 

  18. Lyons JP, Mueller UW, Ji H, Everett C, Fang X, Hsieh JC, et al. Wnt-4 activates the canonical β-catenin-mediated Wnt pathway and binds Frizzled-6 CRD: functional implications of Wnt/β-catenin activity in kidney epithelial cells. Exp Cell Res 298:369–87, 2004. doi:10.1016/j.yexcr.2004.04.036.

    Article  PubMed  CAS  Google Scholar 

  19. Huguet EL, McMahon JA, McMahon AP, Bicknell R, Harris AL. Differential expression of human Wnt genes 2, 3, 4, and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res 54:2615–21, 1994.

    PubMed  CAS  Google Scholar 

  20. Uraguchi M, Morikawa M, Shirakawa M, Sanada K, Imai K. Activation of WNT family expression and signaling in squamous cell carcinomas of the oral cavity. J Dent Res 83:327–32, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Huang CL, Liu D, Nakano J, Ishikawa S, Kontani K, Yokomise H, et al. Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor—an expression in non-small-cell lung cancer. J Clin Oncol 23:8765–73, 2005. doi:10.1200/JCO.2005.02.2871.

    Article  PubMed  Google Scholar 

  22. Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, et al. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12:1691–704, 1998. doi:10.1101/gad.12.11.1691.

    Article  PubMed  CAS  Google Scholar 

  23. Potok MA, Cha KB, Hunt A, Brinkmeier ML, Leitges M, Kispert A, et al. WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev Dyn 237:1006–20, 2008. doi:10.1002/dvdy.21511.

    Article  PubMed  CAS  Google Scholar 

  24. Benhaj K, Akcali KC, Ozturk M. Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol Rep 15:701–7, 2006.

    PubMed  CAS  Google Scholar 

  25. Bradbury JM, Edwards PA, Niemeyer CC, Dale TC. Wnt-4 expression induces a pregnancy-like growth pattern in reconstituted mammary glands in virgin mice. Dev Biol 170:553–63, 1995. doi:10.1006/dbio.1995.1236.

    Article  PubMed  CAS  Google Scholar 

  26. Wong GT, Gavin BJ, McMahon AP. Differential transformation of mammary epithelial cells by Wnt genes. Mol Cell Biol 14:6278–86, 1994.

    PubMed  CAS  Google Scholar 

  27. Ying J, Li H, Yu J, Ng KM, Poon FF, Wong SC, et al. WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clin Cancer Res 14:55–61, 2008. doi:10.1158/1078-0432.CCR-07-1644.

    Article  PubMed  CAS  Google Scholar 

  28. Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL, et al. Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63:3735–42, 2003.

    PubMed  CAS  Google Scholar 

  29. Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJ, et al. Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149:1235–42, 2008. doi:10.1210/en.2007-0542.

    Article  PubMed  CAS  Google Scholar 

  30. Wang Y, Macke JP, Abella BS, Andreasson K, Worley P, Gilbert DJ, et al. A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J Biol Chem 271:4468–76, 1996. doi:10.1074/jbc.271.8.4468.

    Article  PubMed  CAS  Google Scholar 

  31. Tokuhara M, Hirai M, Atomi Y, Terada M, Katoh M. Molecular cloning of human Frizzled-6. Biochem Biophys Res Commun 243:622–7, 1998. doi:10.1006/bbrc.1998.8143.

    Article  PubMed  CAS  Google Scholar 

  32. Borello U, Buffa V, Sonnino C, Melchionna R, Vivarelli E, Cossu G. Differential expression of the Wnt putative receptors Frizzled during mouse somitogenesis. Mech Dev 89:173–7, 1999. doi:10.1016/S0925-4773(99)00205-1.

    Article  PubMed  CAS  Google Scholar 

  33. Stark MR, Biggs JJ, Schoenwolf GC, Rao MS. Characterization of avian frizzled genes in cranial placode development. Mech Dev 93:195–200, 2000. doi:10.1016/S0925-4773(00)00263-X.

    Article  PubMed  CAS  Google Scholar 

  34. Stark MR, Rao MS, Schoenwolf GC, Yang G, Smith D, Mauch TJ. Frizzled-4 expression during chick kidney development. Mech Dev 98:121–5, 2000. doi:10.1016/S0925-4773(00)00440-8.

    Article  PubMed  CAS  Google Scholar 

  35. Sagara N, Kirikoshi H, Terasaki H, Yasuhiko Y, Toda G, Shiokawa K, et al. FZD4S, a splicing variant of frizzled-4, encodes a soluble-type positive regulator of the WNT signaling pathway. Biochem Biophys Res Commun 282:750–6, 2001. doi:10.1006/bbrc.2001.4634.

    Article  PubMed  CAS  Google Scholar 

  36. Hsieh M, Boerboom D, Shimada M, Lo Y, Parlow AF, Luhmann UF, et al. Mice null for Frizzled4 (Fzd4−/−) are infertile and exhibit impaired corpora lutea formation and function. Biol Reprod 73:1135–46, 2005. doi:10.1095/biolreprod.105.042739.

    Article  PubMed  CAS  Google Scholar 

  37. Golan T, Yaniv A, Bafico A, Liu G, Gazit A. The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt∙β-catenin signaling cascade. J Biol Chem 279:14879–88, 2004. doi:10.1074/jbc.M306421200.

    Article  PubMed  CAS  Google Scholar 

  38. Rhee CS, Sen M, Lu D, Wu C, Leoni L, Rubin J, et al. Wnt and frizzled receptors as potential targets for immunotherapy in head and neck squamous cell carcinomas. Oncogene 21:6598–605, 2002. doi:10.1038/sj.onc.1205920.

    Article  PubMed  CAS  Google Scholar 

  39. Papkoff J, Rubinfeld B, Schryver B, Polakis P. Wnt-1 regulates free pools of catenins and stabilizes APC–catenin complexes. Mol Cell Biol 16:2128–34, 1996.

    PubMed  CAS  Google Scholar 

  40. Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrübl F, et al. Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 109:589–97, 2005. doi:10.1007/s00401-005-1004-x.

    Article  PubMed  CAS  Google Scholar 

  41. Oikonomou E, Barreto DC, Soares B, De Marco L, Buchfelder M, Adams EF. Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol 73:205–9, 2005. doi:10.1007/s11060-004-5232-z.

    Article  PubMed  CAS  Google Scholar 

  42. Semba S, Han SY, Ikeda H, Horii A. Frequent nuclear accumulation of β-catenin in pituitary adenoma. Cancer 91:42–8, 2001. doi:10.1002/1097-0142(20010101)91:1<42::AID-CNCR6>3.0.CO;2-7.

    Article  PubMed  CAS  Google Scholar 

  43. Weber U, Paricio N, Mlodzik M. Jun mediates Frizzled-induced R3/R4 cell fate distinction and planar polarity determination in the Drosophila eye. Development 127:3619–29, 2000.

    PubMed  CAS  Google Scholar 

  44. Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C, Krebsbach PH, et al. Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 282:30938–48, 2007. doi:10.1074/jbc.M702391200.

    Article  PubMed  CAS  Google Scholar 

  45. Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133:151–61, 2006. doi:10.1242/dev.02174.

    Article  PubMed  CAS  Google Scholar 

  46. Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S. Protein kinase C activates the MEK–ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 271:23512–9, 1996. doi:10.1074/jbc.271.38.23512.

    Article  PubMed  CAS  Google Scholar 

  47. La Rosa S, Uccella S, Dainese L, Marchet S, Placidi C, Vigetti D, et al. Characterization of C-Kit (CD117) expression in human normal pituitary cells and pituitary adenomas. Endocr Pathol 19:104–11, 2008. doi:10.1007/s12022-008-9032-4.

    Article  PubMed  CAS  Google Scholar 

  48. Wandzioch E, Edling CE, Palmer RH, Carlsson L, Hallberg B. Activation of the MAP kinase pathway by c-Kit is PI-3 kinase dependent in hematopoietic progenitor/stem cell lines. Blood 104:51–7, 2004. doi:10.1182/blood-2003-07-2554.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Hideaki Hasegawa and Hideo Tsukamoto from the Teaching and Research Support Center, Tokai University School of Medicine for their technical support. This work was supported by Grants-in-Aid for Scientific Research Projects (#19390105) from the Ministry of Education Culture, Sports, Science, and Technology, Japan, and by the Research on Measures for Intractable Diseases Project of the Hypothalamo-Pituitary Dysfunction Research Group of the Ministry of Health, Labor, and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Yoshiyuki Osamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyakoshi, T., Takei, M., Kajiya, H. et al. Expression of Wnt4 in Human Pituitary Adenomas Regulates Activation of the β-Catenin-Independent Pathway. Endocr Pathol 19, 261–273 (2008). https://doi.org/10.1007/s12022-008-9048-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-008-9048-9

Keywords

Navigation