Skip to main content
Log in

Significance of hematopoietic surface antigen CD34 in neuroblastoma prognosis and the genetic landscape of CD34-expressing neuroblastoma CSCs

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

High-risk neuroblastoma (HR-NB) is branded with hematogenous metastasis, relapses, and dismal long-term survival. Intensification of consolidation therapy with tandem/triple autologous stem cell (SC) rescue (with bone marrow [BM]/peripheral blood [PB] CD34+ selection) after myeloablative chemotherapy has improved long-term survival. However, the benefit is limited by the indication of NB cells in CD34+ PBSCs, CD34 expression in NB cells, and the risk of reinfusing NB cancer stem cells (NB CSCs) that could lead to post-transplant relapse. We investigated the association of CD34 surface expression (92 patients) with NB evolution/clinical outcomes. CD34 gene-level status in NB was assessed through RNA-Seq data mining (18 cohorts, n, 3324). Genetic landscape of CD34-expressing NB CSCs (CD133+CD34+) was compared with CD34 CSCs (CD133+CD34). RNA-seq data revealed equivocal association patterns of CD34 expression with patient survival. Our immunohistochemistry data revealed definite, but rare (mean, 0.73%; range 0.00–7.87%; median, 0.20%) CD34 positivity in NB. CD34+ significantly associated with MYCN amplification (p, 0.003), advanced disease stage (p, 0.016), and progressive disease (PD, p < 0.0009) after clinical therapy. A general high-is-worse tendency was observed in patients with relapsed disease. High CD34+ correlated with poor survival in patients with N-MYC-amplified HR-NB. Gene expression analysis of CD34+-NB CSCs identified significant up (4631) and downmodulation (4678) of genes compared with NB CSCs that lack CD34. IPA recognized the modulation of crucial signaling elements (EMT, stemness maintenance, differentiation, inflammation, clonal expansion, drug resistance, metastasis) that orchestrate NB disease evolution in CD34+ CSCs compared with CD34 CSCs. While the function of CD34 in NB evolution requires further in-depth investigation, careful consideration should be exercised for autologous stem cell rescue with CD34+ selection in NB patients.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No additional data are available.

References

  • Abdullah LN, Chow EK. Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med. 2013;2:3.

    PubMed  PubMed Central  Google Scholar 

  • Ahmed AA, Zhang L, Reddivalla N, Hetherington M. Neuroblastoma in children: update on clinicopathologic and genetic prognostic factors. Pediatr Hematol Oncol. 2017;34:165–85.

    PubMed  Google Scholar 

  • Alisi A, Cho WC, Locatelli F, Fruci D. Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma. Int J Mol Sci. 2013;14:24706–25.

    PubMed  PubMed Central  Google Scholar 

  • Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology committee. Br J Cancer. 2009;100:1471–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • American-Cancer-Society. (2020). Cancer Facts & Figures Atlanta: American Cancer Society 1–64.

  • Aravindan N, Jain D, Somasundaram DB, Herman TS, Aravindan S. Cancer stem cells in neuroblastoma therapy resistance. Cancer Drug Resist. 2019a;2:948–67.

    PubMed  PubMed Central  Google Scholar 

  • Aravindan N, Subramanian K, Somasundaram DB, Herman TS, Aravindan S. MicroRNAs in neuroblastoma tumorigenesis, therapy resistance, and disease evolution. Cancer Drug Resist. 2019b;2:1086–105.

    PubMed  PubMed Central  Google Scholar 

  • Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer stem cells in neuroblastoma: expanding the therapeutic frontier. Front Mol Neurosci. 2019;12:131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berger M, Kanold J, Rapatel C, deLumley L, Lutz P, Plantaz D, et al. Feasibility of a PB CD34+ cell transplantation procedure using standard leukapheresis products in very small children. Bone Marrow Transplant. 1997;20:191–8.

    CAS  PubMed  Google Scholar 

  • Cho HW, Lee JW, Ma Y, Yoo KH, Sung KW, Koo HH. Treatment outcomes in children and adolescents with relapsed or progressed solid tumors: a 20-year, single-center study. J Korean Med Sci. 2018;33:e260.

    PubMed  PubMed Central  Google Scholar 

  • Choi HS, Koh SH, Park ES, Shin HY, Ahn HS. CNS recurrence following CD34+ peripheral blood stem cell transplantation in stage 4 neuroblastoma. Pediatr Blood Cancer. 2005;45:68–71.

    CAS  PubMed  Google Scholar 

  • Civin CI (1995). Purification and expansion of haemopoietic stem cells. Schlossmann, S.F. et al. (Eds.), Leucocyte Typing V. White Cell Differentiation Antigens 1:869–871.

  • Corrias MV, Haupt R, Carlini B, Parodi S, Rivabella L, Garaventa A, et al. Peripheral blood stem cell tumor cell contamination and survival of neuroblastoma patients. Clin Cancer Res. 2006;12:5680–5.

    CAS  PubMed  Google Scholar 

  • Frappaz D, Michon J, Coze C, Berger C, Plouvier E, Lasset C, et al. LMCE3 treatment strategy: results in 99 consecutively diagnosed stage 4 neuroblastomas in children older than 1 year at diagnosis. J Clin Oncol. 2000;18:468–76.

    CAS  PubMed  Google Scholar 

  • Fritsch G, Buchinger P, Printz D, Fink FM, Mann G, Peters C, et al. Rapid discrimination of early CD34+ myeloid progenitors using CD45-RA analysis. Blood. 1993;81:2301–9.

    CAS  PubMed  Google Scholar 

  • George RE, Li S, Medeiros-Nancarrow C, Neuberg D, Marcus K, Shamberger RC, et al. High-risk neuroblastoma treated with tandem autologous peripheral-blood stem cell-supported transplantation: long-term survival update. J Clin Oncol. 2006;24:2891–6.

    PubMed  Google Scholar 

  • Gurney JG, Smith MA, Ross JA (1999). Cancer among infants. Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995, National Cancer Institute, Bethesda, MD NIH Pub. No. 99-4649 149–156.

  • Hafer R, Voigt A, Gruhn B, Zintl F. Neuroblastoma cells can express the hematopoietic progenitor cell antigen CD34 as detected at surface protein and mRNA level. J Neuroimmunol. 1999;96:201–6.

    CAS  PubMed  Google Scholar 

  • Handgretinger R, Leung W, Ihm K, Lang P, Klingebiel T, Niethammer D. Tumour cell contamination of autologous stem cells grafts in high-risk neuroblastoma: the good news? Br J Cancer. 2003;88:1874–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansford LM, McKee AE, Zhang L, George RE, Gerstle JT, Thorner PS, et al. Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res. 2007;67:11234–43.

    CAS  PubMed  Google Scholar 

  • Illhardt T, Toporski J, Feuchtinger T, Turkiewicz D, Teltschik HM, Ebinger M, et al. Haploidentical stem cell transplantation for refractory/relapsed neuroblastoma. Biol Blood Marrow Transplant. 2018;24:1005–12.

    PubMed  Google Scholar 

  • Kanold J, Halle P, Tchirkov A, Berger M, Giarratana MC, Kobari L, et al. Ex vivo expansion of autologous PB CD34+ cells provides a purging effect in children with neuroblastoma. Bone Marrow Transplant. 2003;32:485–8.

    CAS  PubMed  Google Scholar 

  • Khan FH, Pandian V, Ramraj S, Natarajan M, Aravindan S, Herman TS, et al. Acquired genetic alterations in tumor cells dictate the development of high-risk neuroblastoma and clinical outcomes. BMC Cancer. 2015a;15:514.

    PubMed  PubMed Central  Google Scholar 

  • Khan FH, Pandian V, Ramraj SK, Aravindan S, Natarajan M, Azadi S, et al. RD3 loss dictates high-risk aggressive neuroblastoma and poor clinical outcomes. Oncotarget. 2015b;6:36522–34.

    PubMed  PubMed Central  Google Scholar 

  • Kletzel M, Katzenstein HM, Haut PR, Yu AL, Morgan E, Reynolds M, et al. Treatment of high-risk neuroblastoma with triple-tandem high-dose therapy and stem-cell rescue: results of the Chicago Pilot II Study. J Clin Oncol. 2002;20:2284–92.

    CAS  PubMed  Google Scholar 

  • Krause DS, Fackler MJ, Civin CI, May WS. CD34: structure, biology, and clinical utility. Blood. 1996;87:1–13.

    CAS  PubMed  Google Scholar 

  • Lebkowski JS, Schain LR, Okrongly D, Levinsky R, Harvey MJ, Okarma TB. Rapid isolation of human CD34 hematopoietic stem cells--purging of human tumor cells. Transplantation. 1992;53:1011–9.

    CAS  PubMed  Google Scholar 

  • Leung W, Chen AR, Klann RC, Moss TJ, Davis JM, Noga SJ, et al. Frequent detection of tumor cells in hematopoietic grafts in neuroblastoma and Ewing’s sarcoma. Bone Marrow Transplant. 1998;22:971–9.

    CAS  PubMed  Google Scholar 

  • Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol. 2013;2:17.

    PubMed  PubMed Central  Google Scholar 

  • Lode HN, Handgretinger R, Schuermann U, Seitz G, Klingebiel T, Niethammer D, et al. Detection of neuroblastoma cells in CD34+ selected peripheral stem cells using a combination of tyrosine hydroxylase nested RT-PCR and anti-ganglioside GD2 immunocytochemistry. Eur J Cancer. 1997;33:2024–30.

    CAS  PubMed  Google Scholar 

  • Mahller YY, Williams JP, Baird WH, Mitton B, Grossheim J, Saeki Y, et al. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS One. 2009;4:e4235.

    PubMed  PubMed Central  Google Scholar 

  • Mapara MY, Korner IJ, Hildebrandt M, Bargou R, Krahl D, Reichardt P, et al. Monitoring of tumor cell purging after highly efficient immunomagnetic selection of CD34 cells from leukapheresis products in breast cancer patients: comparison of immunocytochemical tumor cell staining and reverse transcriptase-polymerase chain reaction. Blood. 1997;89:337–44.

    CAS  PubMed  Google Scholar 

  • Marabelle A, Merlin E, Halle P, Paillard C, Berger M, Tchirkov A, et al. CD34+ immunoselection of autologous grafts for the treatment of high-risk neuroblastoma. Pediatr Blood Cancer. 2011;56:134–42.

    PubMed  Google Scholar 

  • Marc, TG, Gurney JG, Smith, MA, Olshan, AF (1999). Sympathetic nervous system tumors. Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995, National Cancer Institute, Bethesda, MD NIH pub. No. 99-4649:65–72.

  • Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med. 1999;341:1165–73.

    CAS  PubMed  Google Scholar 

  • Modak S, Le Luduec JB, Cheung IY, Goldman DA, Ostrovnaya I, Doubrovina E, et al. Adoptive immunotherapy with haploidentical natural killer cells and anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: results of a phase I study. Oncoimmunology. 2018;7:e1461305.

    PubMed  PubMed Central  Google Scholar 

  • Morgenstern DA, Baruchel S, Irwin MS. Current and future strategies for relapsed neuroblastoma: challenges on the road to precision therapy. J Pediatr Hematol Oncol. 2013;35:337–47.

    CAS  PubMed  Google Scholar 

  • Moss TJ, Cairo M, Santana VM, Weinthal J, Hurvitz C, Bostrom B. Clonogenicity of circulating neuroblastoma cells: implications regarding peripheral blood stem cell transplantation. Blood. 1994;83:3085–9.

    CAS  PubMed  Google Scholar 

  • Ning B, Cheuk DK, Chiang AK, Lee PP, Ha SY, Chan GC. Autologous cord blood transplantation for metastatic neuroblastoma. Pediatr Transplant. 2016;20:290–6.

    PubMed  Google Scholar 

  • Pandian V, Ramraj S, Khan FH, Azim T, Aravindan N. Metastatic neuroblastoma cancer stem cells exhibit flexible plasticity and adaptive stemness signaling. Stem Cell Res Ther. 2015;6:2.

    PubMed  PubMed Central  Google Scholar 

  • Peinemann F, van Dalen EC, Enk H, Berthold F. Retinoic acid postconsolidation therapy for high-risk neuroblastoma patients treated with autologous haematopoietic stem cell transplantation. Cochrane Database Syst Rev. 2017;8:CD010685.

    PubMed  Google Scholar 

  • Peiris-Pages M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res. 2016;18:55.

    PubMed  PubMed Central  Google Scholar 

  • Prieto-Vila M, Takahashi RU, Usuba W, Kohama I, Ochiya T. Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci. 2017;18.

  • Rill DR, Santana VM, Roberts WM, Nilson T, Bowman LC, Krance RA, et al. Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood. 1994;84:380–3.

    CAS  PubMed  Google Scholar 

  • Ross RA, Biedler JL, Spengler BA. A role for distinct cell types in determining malignancy in human neuroblastoma cell lines and tumors. Cancer Lett. 2003;197:35–9.

    CAS  PubMed  Google Scholar 

  • Salazar-Riojas R, Garcia-Lozano JA, Valdes-Galvan M, Martinez-Gonzalez O, Cantu-Rodriguez OG, Gonzalez-Llano O, et al. Effective collection of peripheral blood stem cells in children weighing 20 kilogram or less in a single large-volume apheresis procedure. J Clin Apher. 2015;30:281–7.

    PubMed  Google Scholar 

  • Santana VM, Furman WL, McGregor LM, Billups CA. Disease control intervals in high-risk neuroblastoma. Cancer. 2008;112:2796–801.

    PubMed  Google Scholar 

  • Sartelet H, Imbriglio T, Nyalendo C, Haddad E, Annabi B, Duval M, et al. CD133 expression is associated with poor outcome in neuroblastoma via chemoresistance mediated by the AKT pathway. Histopathology. 2012;60:1144–55.

    PubMed  Google Scholar 

  • Seif AE, Naranjo A, Baker DL, Bunin NJ, Kletzel M, Kretschmar CS, et al. A pilot study of tandem high-dose chemotherapy with stem cell rescue as consolidation for high-risk neuroblastoma: Children’s Oncology Group study ANBL00P1. Bone Marrow Transplant. 2013;48:947–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon T, Berthold F, Borkhardt A, Kremens B, De Carolis B, Hero B. Treatment and outcomes of patients with relapsed, high-risk neuroblastoma: results of German trials. Pediatr Blood Cancer. 2011;56:578–83.

    PubMed  Google Scholar 

  • Smith MA, Seibel NL, Altekruse SF, Ries LA, Melbert DL, O’Leary M, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol. 2010;28:2625–34.

    PubMed  PubMed Central  Google Scholar 

  • Somasundaram DB, Subramanian K, Aravindan S, Yu Z, Natarajan M, Herman T, et al. De novo regulation of RD3 synthesis in residual neuroblastoma cells after intensive multi-modal clinical therapy harmonizes disease evolution. Sci Rep. 2019;9:11766.

    PubMed  PubMed Central  Google Scholar 

  • Tchirkov A, Kanold J, Giollant M, Halle-Haus P, Berger M, Rapatel C, et al. Molecular monitoring of tumor cell contamination in leukapheresis products from stage IV neuroblastoma patients before and after positive CD34 selection. Med Pediatr Oncol. 1998;30:228–32.

    CAS  PubMed  Google Scholar 

  • Tong QS, Zheng LD, Tang ST, Ruan QL, Liu Y, Li SW, et al. Expression and clinical significance of stem cell marker CD133 in human neuroblastoma. World J Pediatr. 2008;4:58–62.

    PubMed  Google Scholar 

  • Veeraraghavan J, Natarajan M, Aravindan S, Herman TS, Aravindan N. Radiation-triggered tumor necrosis factor (TNF) alpha-NFkappaB cross-signaling favors survival advantage in human neuroblastoma cells. J Biol Chem. 2011;286:21588–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veljkovic D, Nonkovic OS, Radonjic Z, Kuzmanovic M, Zecevic Z. Bone marrow processing for transplantation using Cobe spectra cell separator. Transfus Apher Sci. 2013;48:359–63.

    PubMed  Google Scholar 

  • Verbeek W, Pies A, Humpe A, Grove D, Troff C, Kunze E, et al. Mobilization of CD34-positive tumour cells in a patient with testicular mixed germ cell tumour. Br J Haematol. 1995;90:947–50.

    CAS  PubMed  Google Scholar 

  • Veschi V, Verona F, Thiele CJ. Cancer stem cells and neuroblastoma: characteristics and therapeutic targeting options. Front Endocrinol (Lausanne). 2019;10:782.

    Google Scholar 

  • Voigt A, Hafer R, Gruhn B, Zintl F. Expression of CD34 and other haematopoietic antigens on neuroblastoma cells: consequences for autologous bone marrow and peripheral blood stem cell transplantation. J Neuroimmunol. 1997;78:117–26.

    CAS  PubMed  Google Scholar 

  • Yue ZX, Huang C, Gao C, Xing TY, Liu SG, Li XJ, et al. MYCN amplification predicts poor prognosis based on interphase fluorescence in situ hybridization analysis of bone marrow cells in bone marrow metastases of neuroblastoma. Cancer Cell Int. 2017;17:43.

    PubMed  PubMed Central  Google Scholar 

  • Zhang P, Wu X, Basu M, Dong C, Zheng P, Liu Y, et al. MYCN amplification is associated with repressed cellular immunity in neuroblastoma: an in silico immunological analysis of TARGET database. Front Immunol. 2017;8:1473.

    PubMed  PubMed Central  Google Scholar 

  • Zhou MJ, Doral MY, DuBois SG, Villablanca JG, Yanik GA, Matthay KK. Different outcomes for relapsed versus refractory neuroblastoma after therapy with (131)I-metaiodobenzylguanidine ((131)I-MIBG). Eur J Cancer. 2015;51:2465–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Fan Z. Cancer stem cells and tumorigenesis. Biophys Rep. 2018;4:178–88.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the NB specimen providers: the Department of Pathology, University of Oklahoma Health Sciences Center; Cooperative Human Tissue Network (CHTN), which is funded by the National Cancer Institute (NCI), and; Oregon Health and Science University Biospecimen core. The authors acknowledge the Stephenson Cancer Center (SCC) Cancer Tissue pathology core for all TMA and IHC services and the SCC Cancer Functional Genomics core for help with whole genome gene expression. The authors also acknowledge the OUHSC Staff Editor (Ms. Kathy Kyler) for the help in critically reviewing this manuscript.

Funding

This work was financially supported by the National Institutes of Health, NIH-P20GM103639, and Oklahoma Center for the Advancement of Science and Technology, OCAST-HR19-04.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Natarajan Aravindan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Institutional review board statement

The study was reviewed and approved by the Institutional Review Board at the University of Oklahoma Health Sciences Center (OUHSC), with permission for the research use of de-identified specimens. All experiments were performed in accordance with OUHSC IRB guidelines and regulations for the protection of human subjects.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A small fraction of NB cells displays CD34 surface expression.

• Presence of CD34-expressing cells associated with advanced disease stage, N-MYC amplification, and disease evolution and, associated with the poor survival of high-risk patients with N-MYC amplification.

• Comparative gene expression profile of CD34+ NB CSCs recognized activated signaling pathways and cellular functions that correspond to disease evolution.

Electronic supplementary material

Figure S1

Association of CD34 transcription with NB disease evolution and poor clinical outcomes: (a) Box-whiskers plot with circles showing high levels of CD34 in high-risk aggressive metastatic stage 4 disease in a cohort of 161 patients. (b) Correlation of CD34 expression with NB clinical outcomes in a cohort of 283 patients. Kaplan-Meier curves showing decreased (b-i) overall survival (OS) and (b-ii) progression-free survival in patients with high CD34 expression compared with low CD34 expression. (c) Kaplan-Meier curve showing a pronounced decrease in relapse-free survival in N-MYC-non-amplified subset (n, 102) of NB patients with high CD34 expression. (d) Kaplan-Meier curves from an independent cohort of 88 NB patients showing significant decrease in (d-i) OS and (d-ii) relapse-free survival (RFS) with high levels of CD34 expression compared with patients who presented with low CD34. Within the same population, patients who presented with high-risk aggressive disease (INSS stage 4) displayed poor (d-iii) OS and (d- iv) RFS. (PPTX 560 kb)

Table S1

(XLSX 52 kb)

Table S2

(XLSX 554 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravindan, N., Somasundaram, D.B., Herman, T.S. et al. Significance of hematopoietic surface antigen CD34 in neuroblastoma prognosis and the genetic landscape of CD34-expressing neuroblastoma CSCs. Cell Biol Toxicol 37, 461–478 (2021). https://doi.org/10.1007/s10565-020-09557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-020-09557-x

Keywords

Navigation