Skip to main content
Log in

Proteome analysis provides new insight into major proteins involved in gibberellin-induced fruit setting in triploid loquat (Eriobotrya japonica)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Parthenocarpy can be induced by gibberellin (GA) treatment in plants. The fruits of the loquat exhibit many seeds. GA treatment can induce the development of seedless fruit and increase fruit quality during production. However, the molecular mechanism of fruit setting under GA treatment is still unclear.

Objective

Our aim was to explore GA-induced parthenocarpy in triploid loquat by proteome analysis to identify the differentially expressed proteins.

Methods

A proteome analysis was performed using TMT protein labeling and LC-MS/MS in triploid loquat.

Results

A total of 7290 protein groups were identified in the two stages of fruit setting. The quantitative results showed that 923 differentially expressed proteins (DEPs) were isolated, which were enriched in five pathways: ribosome, citrate cycle (TCA cycle), pentose phosphate, carbon metabolism, and carbon fixation. Twenty-four DEPs were annotated as putative key regulatory proteins involved in fruit setting, which were related to the auxin response, gibberellin metabolism, ethylene synthesis, and cell division. In addition, thirty-five DEPs were involved in the formation of the cell wall, which might be downstream proteins involved in cell proliferation during fruit setting.

Conclusion

Our report reveals new insight into the protein dynamics of loquat fruit setting induced by GA treatment via the analysis of proteome profiles and provides a reference for other Rosaceae species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository (https://www.iprox.org/) with the dataset identifier PXD015401.

References

  • Begue H, Jeandroz S, Blanchard C, Wendehenne D, Rosnoblet C (2017) Structure and functions of the chaperone-like p97/CDC48 in plants. Bba Gen Subj 1861(1):3053–3060

    Article  CAS  Google Scholar 

  • Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21(6):1647–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis DH, Burge GK, Hopping ME, Paula EJ (1996) Cytokinins and fruit development in the kiwifruit (Actinidia deliciosa). II. Effects of reduced pollination and cppu application. Physiol Plant 98(1):187–195

    Article  CAS  Google Scholar 

  • Davison RM (1960) Fruit-setting of apples using gibberellic acid. Nature 188(4751):681–682

    Article  CAS  Google Scholar 

  • De Jong M, Wolters-Arts M, Garcia-Martinez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. J Exp Bot 62(2):617–626

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Chen B, Xia X, Mao W, Shi K, Zhou Y, Yu J (2013) Cytokinin-induced parthenocarpic fruit development in tomato is partly dependent on enhanced gibberellin and auxin biosynthesis. PLoS One 8(7):e70080–e70080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feiler HS, Desprez T, Santoni V, Kronenberger J, Caboche M, Traas J (1995) The higher-plant Arabidopsis-Thaliana encodes a functional Cdc48 Homolog which is highly expressed in dividing and expanding cells. Embo J 14(22):5626–5637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson DL, Turley RB, Triplett BA, Meredith WR (1996) Comparison of protein profiles during cotton (Gossypium hirsutum L) fiber cell development with partial sequences of two proteins. J Agric Food Chem 44(12):4022–4027

    Article  CAS  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JC, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145(2):351–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goubran FH, El-Zeftawi BM (1986) Induction of seedless loquat. Acta Hort 179:381–384

    Article  Google Scholar 

  • Hamilton AJ, Bouzayen M, Grierson D (1991) Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA 88(16):7434–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanana M, Deluc L, Fouquet R, Daldoul S, Leon C, Barrieu F, Ghorbel A, Mliki A, Hamdi S (2008) Identification and characterization of "rd22" dehydration responsive gene in grapevine (Vitis vinifera L.). Compt Rend Biol 331(8):569–578

    Article  CAS  Google Scholar 

  • Hatzopoulos P, Fong F, Sung ZR (1990) Abscisic acid regulation of DC8, a carrot embryonic gene. Plant Physiol 94(2):690–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X, Zhou J, Liu C, Liu L, Shen L, Yu H (2014) Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat Commun 5:4601

    Article  CAS  PubMed  Google Scholar 

  • Hu JH, Israeli A, Ori N, Sun TP (2018) The interaction between DELLA and ARF/IAA mediates crosstalk between gibberellin and auxin signaling to control fruit initiation in tomato. Plant Cell 30(8):1710–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang Y-H, Kim S-K, Lee KC, Chung YS, Lee JH, Kim J-K (2016) Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time. Plant Cell Rep 35(4):857–865

    Article  CAS  PubMed  Google Scholar 

  • Janick J (2013) Chap. 5: breeding loquat plant breeding reviews. Wiley, Amsterdam, pp 259–296

    Book  Google Scholar 

  • Jiang SA, Luo J, Xu FJ, Zhang XY (2016) Transcriptome analysis reveals candidate genes Involved in gibberellin-induced fruit setting in triploid loquat (Eriobotrya japonica). Front Plant Sci 7:1924

    PubMed  PubMed Central  Google Scholar 

  • Kiyokawa I, Nakagawa S (1972) Parthenocarpic fruit growth and development of the peach as influenced by gibberellin application. Engei Gakkai Zasshi 41(2):133–143

    Article  CAS  Google Scholar 

  • Kondo S, Fukuda K (2001) Changes of jasmonates in grape berries and their possible roles in fruit development. Sci Hortic Amsterdam 91(3–4):275–288

    Article  CAS  Google Scholar 

  • Lee YR, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136(4):3877–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma N, Wang Y, Qiu S, Kang Z, Che S, Wang G, Huang J (2013) Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLos One 8(10):e75997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacMillan J (2001) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 20(4):387–442

    Article  CAS  PubMed  Google Scholar 

  • Marti C, Orzaez D, Ellul P, Moreno V, Carbonell J, Granell A (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52(5):865–876

    Article  CAS  PubMed  Google Scholar 

  • Mesejo C, Yuste R, Reig C, Martínez-Fuentes A, Iglesias DJ, Muñoz-Fambuena N, Bermejo A, Germanà M, Primo-Millo E, Agustí M (2016) Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species. Plant Sci 247:13–24

    Article  CAS  PubMed  Google Scholar 

  • Newbury HJ, Sedgley M, Possingham JV (1978) Nucleic acid metabolism during early development of pollinated and auxin-induced parthenocarpic watermelon fruits. J Exp Bot 29(108):207–215

    Article  CAS  Google Scholar 

  • Niu Q, Wang T, Li J, Yang Q, Qian M, Teng Y (2015) Effects of exogenous application of GA4 + 7, and n -(2-chloro-4-pyridyl)- n'-phenylurea on induced parthenocarpy and fruit quality in Pyrus pyrifolia,'cuiguan'. Plant Growth Regul 76(3):251–258

    Article  CAS  Google Scholar 

  • Niu Q, Zong Y, Qian M, Yang F, Teng Y (2014) Simultaneous quantitative determination of major plant hormones in pear flowers and fruit by uplc/esi-ms/ms. Anal Methods UK 6(6):1766–1773

    Article  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400(6741):256–261

    Article  CAS  PubMed  Google Scholar 

  • Qin R, Akhter D, Yang CC, Nath UK, Eshag J, Jin XL, Shi CH (2018) SRG1, encoding a kinesin-4 protein, is an important factor for determining grain shape in rice. Rice Sci 25(6):297–307

    Article  Google Scholar 

  • Rancour DM, Dickey CE, Park S, Bednarek SY (2002) Characterization of AtCDC48. Evidence for multiple membrane fusion mechanisms at the plane of cell division in plants. Plant Physiol 130(3):1241–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarnowska EA, Rolicka AT, Bucior E, Cwiek P, Tohge T, Fernie AR, Jikumaru Y, Kamiya Y, Franzen R, Schmelzer E, Porri A, Sacharowski S, Gratkowska DM, Zugaj DL, Taff A, Zalewska A, Archacki R, Davis SJ, Coupland G, Koncz C, Jerzmanowski A, Sarnowski TJ (2013) DELLA-interacting SWI3C core subunit of switch/sucrose nonfermenting chromatin remodeling complex modulates gibberellin responses and hormonal cross talk in Arabidopsis. Plant Physiol 163(1):305–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sastry KK, Muir RM (1963) Gibberellin: effect on diffusible auxin in fruit development. Science 140(3566):494–495

    Article  CAS  PubMed  Google Scholar 

  • Shiozaki S, Miyagawa T, Ogata T, Horiuchi S, Kawase K (1997) Differences in cell proliferation and enlargement between seeded and seedless grape berries induced parthenocarpically by gibberellin. J Hortic Sci 72(5):705–712

    Article  Google Scholar 

  • Sun TP (2011) The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol CB 21(9):R338–R345

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Fujino K, Kikuta Y, Koda Y (1994) Expansion of potato cells in response to jasmonic acid. Plant Sci 100(1):3–8

    Article  CAS  Google Scholar 

  • Tan L, Pu Y, Pattathil S, Avci U, Qian J, Arter A, Chen L, Hahn M, Ragauskas A, Kieliszewski M (2014) Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells. Plos One 9(12):e115906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) Glbberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature 437(7059):693–698

    Article  CAS  PubMed  Google Scholar 

  • Ulloa RM, Raices M, MacIntosh GC, Maldonado S, Tellez-Inon MT (2002) Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum. Physiol Plant 115(3):417–427

    Article  CAS  PubMed  Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177(1):60–76

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Gao Y, Wang J, Yang L, Song R, Li X, Shi J (2011) Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α‐expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol J 9(4):486–502

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao M, Wu W, Korir NK, Wang Z (2017) Comparative transcriptome analysis of berry-sizing effects of gibberellin (GA3) on seedless Vitis Vinifera L. Genes Genom 39(7161):1–15

    Google Scholar 

  • Watanabe M, Segawa H, Murakami M, Sagawa S, Komori S (2008) Effects of plant growth regulators on fruit set and fruit shape of parthenocarpic apple fruits. J Jpn Soc Hortic Sci 77(4):350–357

    Article  CAS  Google Scholar 

  • Wu Y, Wang Y, Mi XF, Shan JX, Li XM, Xu JL, Lin HX (2016) The QTL GNP1 encodes GA20ox1, which increases grain number and yield by increasing cytokinin activity in rice panicle meristems. PLoS Genet 12(10):e1006386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yarushnykov VV, Blanke MM (2005) Alleviation of frost damage to pear flowers by application of gibberellin. Plant Growth Regul 45(1):21–27

    Article  CAS  Google Scholar 

  • Zhang WY, Abdelrahman M, Jiu ST, Guan L, Han J, Zheng T, Jia HF, Song CN, Fang JG, Wang C (2019) VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC Plant Biol 19(1):111

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Ouyi.biotech.co.ltd (Shanghai, China) has provided technical support in our proteome analysis.

Funding

This work was financed by A Grant for Agriculture Applied Technology Development Program from Shanghai Agriculture Committee (2015-6-2-2) and a Grant from the National Natural Science Foundation of China (No. 31701886).

Author information

Authors and Affiliations

Authors

Contributions

SJ performed the experiments and wrote the manuscript. HA and FX helped to analyze the data and revise the manuscript. XZ involved in designing the research and revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Xueying Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., An, H., Xu, F. et al. Proteome analysis provides new insight into major proteins involved in gibberellin-induced fruit setting in triploid loquat (Eriobotrya japonica). Genes Genom 42, 383–392 (2020). https://doi.org/10.1007/s13258-019-00912-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00912-9

Keywords

Navigation